Time survey on embedded software using remote IP
log system: a GPON study case

Afonso Augusto Romao V. Alvim
afonso.alvim@hotmail.com

Fernanda Yumi Matsuda
Aline Cristine Fadel
André Berti Sassi
Rodrigo De Almeida Moreira
CPgD Foundation

Marcos Perez Mokarzel
Instituto Nacional de Telecomunicacdes - Inatel
P.O. Box 05 - 37540-000
Santa Rita do Sapucai - MG - Brazil
mpmoka@inatel.br

Rod Campinas - Mogi-Mirim (SP-340) - km 118,5

13086-902 - Campinas, SP - Brazil

{ fmatsuda, afadel, asassi, rmoreira }@cpqd.com.br

Abstract—Many telecommunications equipment must be able
to deal with different terminals simultaneously, tterefore they
must have some sort of CPU time sharing. Convertingasks in
messages to send to a fair scheduler is widely eropéd for that,
however understanding CPU times is still a challerg In this
paper we propose a new scheme to remotely recoverPO
resources information from embedded software usingpgger over
Ethernet UDP/IP. We propose three log tickets, onevhen a
message enters a message queue, other when a messags the
queue and the last when the software finishes meggaprocessing.
With these three new tickets, we can calculate théme interval
that a message waits in the queue and the time thétte message
takes to be processed. We implemented this log sae in a real
GPON OLT successfully, obtaining precision of 1 msWith this
new system, we were able to quickly identify timessues such as
thread invasion and messages that must have highpriority.

Index Terms— Remote log, time survey, inter-process queue,
processing time, CPU occupation.

. INTRODUCTION

Telecommunication systems, mainly in access netsyaie
composed by one aggregator and a set of termiBaksides,
all equipment must provide means to operators tdfigure
the system and, nowadays, most of equipment can
configured by different ways at the same time. €fae,
aggregator’'s CPU (central processing unit) mustreshiane
among many different processes. These cases ob@zach
multitask client/server system, where the operatme the
clients and the aggregator's CPU is the serverrthatt fulfill
the requests from different terminals and operators

e Throughput: Number of processes (or
executed per time unit [3].

e Turnaround time: Time spent by the CPU for each
processing [3].

» Waiting time: Time that each process waits in the queue
to start being processed by the CPU.

* Response time: Time to the system to produce the task

messages)

result.

* Memory utilization: Amount of memory allocated in the
process.

When it comes to embedded software, getting this

information is a very difficult task. Most of thémne, these
equipment have no operating system (OS) or ther@®athe
CPU do not provide the required information. On tiker
hand, if the system provides it, sometimes theesyshay not
correctly identify who is the owner of the procebst is
causing the problem, since OS doesn’t know thensof’s
internal division.

Providing a real-time and non-intrusive (RTNI) @May to
get this information might be very helpful. In thpsiper, we
pwpose a new scheme to remotely recover CPU timing
information using a remote log system that rung &BP/IP.
This scheme is not totally RTNI, but the results promising.
Tests were made in an OLT (optical line termindl)G&®ON
(Gigabit-capability passive optical networks) [Sithwsuccess.
Issues such as thread invasion and prioritizatierevquickly
identified and fixed.

Regardless computational method employed in the tim In the next section, we describe how time sharingtrbe to

sharing, it is important that all the resourceméti memory,
etc.) fit some values for proper functioning of thdole
system [1], [2]. Particularly, some of these resear are
especially important:

work out with our method. In Section lll, we deserithe log
scheme, how to create and how to process ticketSettion
IV, we present our real implementation in an OLT atow
the collected results. Results are evaluated intiGecV.

« CPU utilization: This is the percentage of the CPU timd™inally, in Section VI, conclusions are presentet zome

in use per time unit. The main goal is to maintdia
CPU busy as long as possible [3].

future work is proposed.

Il. SCHEDULER OLT GPON

. Main software Logger
One may find in technical literature many differevays to - Start . N = —
. . Print me DZECl 1cket
share time between tasks using the same CPU. Otlirudes ﬁfl aind B

tasks in a queue, which means that all new tasksa@mverted
to a message in a queue of the scheduler as shoWwig.i 1.
This method is widely employed in telecommunication

Function
stack

CPU
tine

equipment. — Internet
Winl ogger
Tasks Queues Logger Timing
—=| Taskteo T T'ime
message v s l process
=2y E Ticket Time Time
2| & 5 report ticket | | report
'g] u Buffer stack
o lo L.t
Scheduler Time Mng
— Fig. 2. GPON Logger block diagram.
Lf\ y g a9 g
T Main embedded software may create tickets in thggeo
2 using three methods:
Main process » Sart: This method must be called at the beginning of any
Ts function that intends to use Logger. It provides to
Logger the function name e some log attributes.
Fig. 1. Example of scheduler block diagram. e Print: This method is called for any new ticket. It
receives the ticket type and a formatting strind dsa

All events received by the CPU through hardware
interruption are replaced by a new message stamethe
message queue, represented in Fig. 1 by the arpowhe
system should have more than one priority queueetwhnew
message is created, it should be assigned to #isgerity
(or queue number). Continuously, the CPU gets thgt n
message from one of the queues and processes é&. Th
processing may also generate other messages tmreel $n
the queues.

A scheduler must decide from which queue it wiketdhe
next message. Different criteria can be employechage this

decision, such as “Shortest Job First” and “RoundiR’ [6]. 1ms of precision. .) .
The main advantage of our method is that all heavy Logger process completes the ticket with the flumctiame

processing is confined in the same thread, whidtuces and a sequence number. Then, i_t sends the tick&_aftrtbogger
problems with concurrent processes and also the tipent through UDP/IP. A ticket buffer is necessary orickets can

with context swapping. On the other hand, an itdifbop can be created fa§ter than th.e Ethernet port dataftnarate.
cause a deadlock in the equipment. WinLogger is responsible for remotely process Idgbkas a

All routines that process messages must be “offihé.e., ticket buffer to store all tickets sent by Loggér. Timing

these routines must take one message, executetheiras COMPonent compiles tickets to generate time reports
quick as possible and free the CPU. If the timpracess the B, Ticket structure

message is too long, other processes will be delayessibly Ticket structure is shown in Fig. 3. Each tickes baly one

causing problems. In this case, processes longan @ gyentinformation and is wrapped in a UDP/IP packet
predetermined interval must be separated in a fseharter

processes.

arguments.

* End: This method must be called at the end of any
function that uses Logger. It informs to Loggertthéh
information about the function is no longer necgssa
and it must be popped from the function stack msid
Logger.

As soon as these methods are called, Logger retriev

current time from the OS and creates a new ticltt that. It

is important to preserve time information as clasepossible

to the event time. Our OLT OS provides time infotioa with

Ticket
Num YY/MM/DD hh:mm: ss.msec FuncName: Push to queue [Type, Id, Priority]

I” LOG &HEME Num YY/MM/DD hh:mm:ss.msec FuncName: Init process [Type, Id]

MNum YY/MM/DD hhimm:ss.msec FuncName: End process [Type, Id]

A. Logger block diagram

The log system is composed by one component, called Fig. 3. Ticket structure
Logger, compiled with the embedded application ¢iar Where:
example, an OLT GPON), and a standalone applicatiaited Num - Ticket sequential number:
WinLogger, that collects and processes ticket mttion in a YY - Eventyear; '
remote computer. Logger’s block diagram is sedrigat2. ’

MM = Event month;
DD - Event day;

hh - Event hour;
mm - Event minute;
ss - Event second;

nsec -> Event millisecond (precision = 1ms);

FuncNane - Name of the function that generates the ticket;

Ny -1

Z TTurnaround (n)

CPU ="
AT

x100 (3

Interval

Where:
Nk is the sequential number of the fitstt process ticket in
intervalk;

Type -> Event type. It identifies who has generated that N.; is the sequential number of the filstit process in

message, for instance, CLI (command-line interface)MCI
(ONT management and control interface);

Id - Message identification, used to correlate tickets
the same message;

Pri ority -> Queue or priority number.

There is no retransmission. Packet loss can béifideinby

interval k+1, which is 1 unit greater than the last ticket in
intervalk;

AT\nerval 1S the time interval;

Trurnaround(N) is theturnaround time for Init process ticket

with sequential numbar, calculated by Eq. 1.

Eq. 4 represents thtroughput for any time interval as the

the sequential numbemMtini, but no recovery system was number oflnit process tickets in the interval. Note that some

implemented due to the high data volume. Therefdime
process block in Fig. 2 must be prepared to requhwket lost.

C. Time survey tickets

Using above structures, three new tickets weretedet
time survey (Fig. 3). These tickets are createdgukbgger’'s
Print method:

intervals may not process any message; in this, chedr
throughput will be zero.

throughput = N,,, = N, (4)

Response time depends on task result. In this case, a table,
such as Table I, must be provided to WinLogger @iatiog

« Push to queue: This ticket corresponds to the event ofhe task with its expected result. This table Wil used to
new message pushed into the queue. In Fig. 1, tii¢asure theesponse time of the system.

event is represented by.T

« Init process. This ticket corresponds to the event of

message popped from the queue and starting to
processed by the main process. In Fig. 1, thistegen
represented by,T

« End process: This ticket corresponds to the event of main

process has finished to process message. In Ftbisl,
event is represented by. T
All tickets have an Id to identify a unique taskittls used
for synchronization. In thBush to queue, a Priority parameter
identifies each priority queue that is used toestbe task. It is
important to follow priorities in scheduler and Werif it is
correctly working.

D. Time processing

As discussed in section I, there are five relev@PU times
to be monitored. Considering; The time in ticketPush to
gueue, T, the time in ticketnit process and T; the time inEnd
process. For each taskurnaround time andwaiting time can
be calculated using Egs. 1 and 2, respectively.

T. 1)

Turnaround

=T, -T,

T, (2

Waiting

=T,-T,

CPU utilization andthroughput need a time interval or time
unit. We use a fixed interval of 1s. Therefd@®U utilization
for intervalk, in percentage, may be calculated by Eq. 3. It
the ratio between alltynaroung IN @ time interval by the time
interval itself.

TABLE |
EXAMPLE OF TASK AND RESULTS TABLE FORRESPONSE TIME TRIGGER
be
Command Result
al Link activated
aco ONU activated
adf Ethernet flow activated
dl Link deactivated
cdf Ethernet flow configured
rdf Ethernet flow removed

This table uses two messages as shown in Fig. 4. A
Received ticket identifies a command sent by the operator,
which is considered the start of the task. Brent sent ticket
identifies the answer sent by the application tcerafor,
indicating the end of the task.

Ticket

Num YY/MM/DD hh:mm:ss.msec FuncName: Received [Command, parameters]

Num YY/MM/DD hhimm:ss.msec FunclName: Event sent [Result]

Fig. 4. Trigger messages fasponse time

Thus,Response time is:

(6)

Tresponsetime = Teventsent = T Received

Where:
Teventsent IS the time ofEvent sent ticket;
Treceived 1S the time oReceived ticket.

is

IV. TESTS AND RESULTS

A. Test infrastructure

In order to ensure the operation of the schemeqs®g in
this paper, we've implement it in a real GPON systén this

responsible for 1024 ONUs (optical network uni@perators
may use multiples CLI terminals and SNMP (Simpldvidek
Management Protocol) to operate, administrate aathtain
the system via Ethernet port or serial RS-232. dllthese
terminals send their tasks to the OLT CPU, whichveots the
tasks in messages as can be seen in Fig. 1.

OLT software was written in C language and Logger The Table Il shows commands at a log and theirseldp

2. Create two ONUs in Link 1.
3. Activate ONU 1.

4. Activate ONU 2.

5. Create 10 Ethernet flows in ONU 1.
6. Create 10 Ethernet flows in ONU 2.
system, we monitor our OLT CPU usage. The CPU is 7. Activate all Ethernet flows in ONU 1.
8. Activate all Ethernet flows in ONU 2.
9. Save all configurations.

10. Get ONU 1 configuration.

11. Deactivate all ONUs in Link 1.

12. Deactivate Link 1.

component was compiled together. Logger uses alesingime. These commands can be easily synchronized @RU
resources information.

UDP/IP port to send its tickets to a remote PC.

WinLogger (Fig. 5), the software in the remote HE,
responsible for dealing with the tickets, saving @nocessing
them and displaying reports. This must be doneecal time,
when tickets arrive from Logger or in batch, usisgved
tickets. In order to generate graphs, WinLoggeresathese
data in tables that can be opened

spreadsheets.

[E05 Fii Feb 18 09.26:41 543 2011 MNG M5 G, [-0102030400000007] Kl 0S_NOT_READY|
1213 Fri Feb 18 09:26:41.568 2011 MNG MSG: |--|0102030400000006] K] 0S_NOT_READY|
1221 Fri Feb 18 09:26:41.573 2011 MNG MSG: |--|0102030400000005] K] 0S_NOT_READY|
1229 Fri Feb 18 09:26:41.577 2011 MNG MSG: |--|0102030400000004] Kl 0S_NOT_READY|
1237 Fii Feb 12 09:26:41.524 2011 MNG MSG: |--0102030400000003| kil 05 _NOT_READY|
1245 Fii Feb 1% 09:26:41.583 2011 MNG MSG: |--0102030400000002| kil 05 _NOT_READY|
1263 Fii Feb 12 09:26:41.592 2011 MNG MSG: |--10102030400000001| kil 05 _NOT_READY|

1005 Fri Feb 12 03:26:41.667 2011 MNG MSG
047 Fi Feb 18 09:26:50 370 2011 Contiol_Messans(0#3296000)> OPERAT : Dperatar message: “Get status from Link 0.0°, IP127.001

(062 Fi Feb 18 09:26:50.374 2011 MNG MSG: Link 0.0 status =» LS_ACTIVE [actual state LS_ACTIVE)

093 Fii Feb 18 09:26:55.620 2011 Coral | OPERAT : Dperator message "Deactivate Link 0.0° 1P127.0.0.1

1104 Fi Feb 18 09:26:55.823 2011 MNG MSG: Link 0.0 inactivated

133 Fi Feb 18 09:26:56.017 2011 Event_SendEvent> EVENT : Event sent [2000 1 0.0 5 18/02/11-09.26:56 1 6 Link inactived]

1136 Fi Feb 18 03:26:56.019 2011 Event_SendEvent> EVENT : Event sent [2000 1 0.0 5 18/02/11-09:26:55 17 5 Serial number acquistion cycle ended successfully]

(174 Fi Feb 18 03:27:00.575 2011 MNG MSG: Set Remote Logger Server [Command executed with success]

1204 Fii Feb 18 03.27:16.586 2011 Conliol_Messagel0:929¢1 a0} OPERAT ; Operator message "Activate Link 0.0, IP-127.0.0.1

1215 Fi Feb 18 03:27:16.590 2011 MNG MSG: Link 0.0 activated [no enor]

(005 Fii Feb 18 03:27:16.619 2011 Event_SendEvent> EVENT : Event sent (2000 1 0.0 5 18/02/11-09:27:16 16 5 Serial number acquisiion cycle stated successiully]
003 Fii Feb 18 03:27:16.620 2011 Event_SendEvent> EVENT : Event sent (2000 1 0.0 5 18/02/11-09:27:16 0 6 Link actived]

1148 Fii Feb 12 09:27:16.809 2011 Event_%endEvent-> EVENT . Event sent (20001 0.0 518/02/11-09.27.16 18 7 ONU discovered]

{115 Fii Feb 12 09:27:18.164 2011 Contral_Message(0x323¢1a0l> OPERAT ; Dperator message “Get ONU discovered Link 0.0, IP:127.0.0.1
1123 Fii Feb 1% 09:27:18.168 2011 MNG MSG: ONU discovered in link 0.0 with SN 01.02.03.04-00.00.00.00

1129 Fii Feb 18 09:27:18.167 2011 MNG MSG: ONU discovered in link 0.0 with SN 00.00.00,00-00.00.01.23

[135 i Feb 18 09:27:18.169 2011 MNG MSG: ONU discovered in link 0.0 with SN 01.23.45.67-89.48.C0 EF

(141 Fii Feb 18 09:27:18.170 2011 MNG MSG: ONU diseavered in ink 0.0 with SN 071.02.03.04-00,00.00.30

[147 Fii Feb 18 09:27:18.175 2011 MNG MSG: ONU diseavered in ink 0.0 with SN 071.02.03.04-00.00.00.3C

[153 Fi Feb 18 09:27:18.175 2011 MNG MSG: ONU discovered in ink 0.0 with SN 071.02.03.04-00.00.00.38

Fig. 5. Tickets in WinLogger

in many differemtssozs

TABLE Il
OPERATORSCOMMANDS IN LOG WITH ITS ELAPSED TIME

Elapsed Operator Command
Time
16221 SatJan 1 00:02:19.189 2000 Control_Mespag@PERAT : "Save OLT configurations”, IP:XML File
31625 Sat Jan 1 00:02:34.593 2000 Control_Mespag@PERAT : "Activate Link 0.0", IP:10.4.1.98

SatJan 1 00:02:35.997 2000 Control_Mespag@PERAT : "New ONU 0.0.1", 1P:10.4.1.98
35065 Sat Jan 1 00:02:38.033 2000 Control_Mespag@PERAT : "Activate ONU 0.0.1", IP:10.4.1.98
60077 Sat Jan 1 00:03:03.045 2000 Control_Mespag@PERAT : "New Ethernet 0. ,1P:10.4.1.98
61137 Sat Jan 1 00:03:04.105 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.3",IP:10.4.1.98
62213 SatJan 1 00:03:05.181 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.4",1P:10.4.1.98
63276 Sat Jan 1 00:03:06.244 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.5", IP:10.4.1.98
64328 Sat Jan 1 00:03:07.296 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.6", IP:10.4.1.98
65387 Sat Jan 1 00:03:08.355 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.7",1P:10.4.1.98
66472 Sat Jan 1 00:03:09.440 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.8", IP:10.4.1.98
67526 SatJan 1 00:03:10.494 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.9", IP:10.4.1.98
68578 SatJan 100:03:11.546 2000 Control_Mespag®PERAT : "New Ethernet 0.0.1.10", IP:10.4.1.98
69637 SatJan 100:03:12.605 2000 Control_Mespag@PERAT : "New Ethernet 0.0.1.11", IP:10.4.1.98
70707 SatJan 100:03:13.675 2000 Control_Mespag@PERAT : "Activate Ethernet 0.0.1.0", IP:10.48
80735 SatJan 1 00:03:23.703 2000 Control_Mespag@PERAT : "New ONU 0.0.2", 1P:10.4.1.98
82741 Sat Jan 1 00:03:25.709 2000 Control_Mespag@PERAT : "Activate ONU 0.0.2", IP:10.4.1.98
107822 | SatJan 100:03:50.790 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.12", IP:10.4.1.98
108877 | SatJan 1 00:03:51.845 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.13", IP:10.4.1.98
109936 | SatJan 100:03:52.904 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.14", IP:10.4.1.98
111029 | SatJan 100:03:53.997 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.15", IP:10.4.1.98
112077 | SatJan 1 00:03:55.045 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.16", IP:10.4.1.98
113131 | SatJan 100:03:56.099 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.17", IP:10.4.1.98
114189 | SatJan 100:03:57.157 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.18", IP:10.4.1.98
115248 | SatJan 100:03:58.216 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.19", IP:10.4.1.98
116327 | SatJan 100:03:59.295 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.20", IP:10.4.1.98
117379 | SatJan 100:04:00.347 2000 Control_Megsag@PERAT : "New Ethernet 0.0.2.21", IP:10.4.1.98
118431 | SatJan 1 00:04:01.399 2000 Control_Me@sag@PERAT : "Activate Ethernet 0.0.2.0", IP:10. 48
128470 | SatJan 100:04:11.438 2000 Control_Megsag@PERAT : "Get Info Application , IP:10.4.1.98
129521 | SatJan 100:04:12.489 2000 Control_Megsag@PERAT : "Deactivate ONU 0.0.1", IP:10.4.1.98
130601 | SatJan 100:04:13.569 2000 Control_Me§sag@PERAT : "Deactivate ONU 0.0.2", IP:10.4.1.98
131736 | SatJan 100:04:14.704 2000 Control_Megsag@PERAT : "Deactivate Link 0.0, IP:10.4.1.98
132748 | SatJan 100:04:15.716 2000 Control_Me@sag@PERAT : "Save OLT configurations *, IP:10.48

Note in Fig. 5, one “Ticket Lost!” message that was
purposely generated to show how WinLogger dealbk thiis
problem. Some events are shown in this image tdichnare

used as task results foasponse time.

B. Test methodol ogy

The operator may configure GPON using OLT’s CLIour
tests we've employed scripts to help us to keepemite
between tests. Scripts’ times are not precise, thay are
precise enough for our tests once we have someagesas

triggers such as those mentioned in Fig. 4.

In order to test priority queues, two priority gesuwere
employed. The highest priority is reserved to aterimal
periodic process. Messages that give command fekdtma
operator and hardware feedbacks were deliveredg usia
lowest priority queue.

The tests were executed using two different scleedul
algorithms: a strict priority algorithm, where theessages in
higher priority queues are delivered first, andoand-robin
algorithm without priority. The period used for tiperiodic
process, or tick time, was also changed duringtéises. Our

Besides our embedded application, OLT's CPU hasrothdefault tick time is 50ms, but we've tested 25nts Hp0ms as
software running in background (including OS) tivaty well, resulting in six applications composing oesttset.

interfere in the tests results. To minimize it, we'run the

same tests many times and have taken average values

We've defined the scripts to include many differenw
operations with different needs. Some GPON insivost
spend more CPU time, while others need more netivaffic.

Our main script follows the sequence bellow.
1. Activate Link 1.

C. Test result

Running the script above, we've captured log tisketing
inLogger. Each test produces graphs tafnaround and
waiting time.

The graph in Fig. 6 showsrnaround andwaiting time for
50ms of tick time. The marks for each operator camen
show when these commands were sent.

1600

1400

Re AL

1200

sloeee

1000

Time (ms)

800

SO W Sos wes
T o

Time (ms)

€00

te
e
.

r'y

PR

300 20300 40300 60300 80300 100300 120300

400

200 [} 1000 2000 3000 4000 5000 6000 7000 8000

o
Eooo.u e
s
s
=

Elapsed time (ms)

#25ms M50ms 4 100ms

Elapsed time (ms)

+Waitingtime ~ WTumzrounc - Operator Command

Fig. 9. Waiting times for 25ms, 50ms and 100ms tick time versions.

)

Fig. 6. Turnaround andwaiting time for 50ms version.

250

Fig. 7 shows the last five commands from the griaphig. 2
6. And Fig. 8 showsvaiting time histogram for high and low 200 =
. A A
priority queues. In this histogram, tickets wereugred in 7 o AoA 8
. = 150
portions of 10ms. E -
- ok :
PRX3 %
* N
1200 >
E‘ 1000 .3 ':“
g 800 ’Q v*'a““ 0 1000 2000 3000 4000 5000 6000 7000 8000
= izs . . Elapsed time (ms)
‘é o,
200 o ‘A S 0.'] #25ms ®50ms 4 100ms
o AR, GRESBEEN meen

128470 129470 130470 131470 132470 133470 134470

) Fig. 10.Turnaround times for 25ms, 50ms and 100ms Tick Time versions.
Elapsed time {ms)

+ Waitingtime mTumaround - Operator Command Fig. 11 shows théhroughput in the CPU. Tests were made
with 25ms, 50ms and 100ms versions. To improve

Fig. 7. Turnaround andwaiting time for last five commands for 50ms version.VI.Sllja"_Zatlon' Fig. 12 and Fig. _13 show, respedyive€PU
utilization andthroughput for last five commands.

30 100
-]
* ‘ ‘ i ‘ # i M * .
25 M Low priority queue || § 80 ‘ Y
High priorit 5 70
“3 # High priority queue a n, l‘ s
£ 20 g 0 g Iy f Iy Bl
2 3 50 P +25
s g @ e »* me
5 15 £ 40 He %
z 3 5 e ap WU
v
g 10 _E 20 A 100ms
» S
= 10
s & EE >
‘ o o o o o (=] [=] o
0 - o)
Time (s)
0 200 400 600 800 1000 1200 1400 1600
Time (ms)

Fig. 11.Throughput for 25ms, 50ms and 100ms versions.

Fig. 8.Waiting time histogram for the last five commands in 50ms weersi
Curves for Q1 (high priority queue) and Q2 (lowopity queue).
Comparing 25ms, 50ms and 100ms tick time versitors,
the last five commands, Fig. 9 shows thwesting times, and
Fig. 10 shows thretirnaround times.

100 limitations, as the queue length tends to incresigeificantly
90 - in this situation. The last four commands, betisualized in
Fig. 7, were sent to the OLT before the previousmmand had
been completed, causing message accumulation iqubees
and, consequently, increasing thaiting time.
m25ms .
.50 ms Processing a message may create other messag&i\and
W m100ms deactivation command is one of the commands tigders a
lot of hardware callbacks, which are the reason,vdfter
ONU deactivation, approximately at 130s in Figthgwaiting
time starts to increase.
1 5 R . 5 . . . The priority queue efficiency can be analyzed usihg
Time (s) waiting time histogram in Fig. 8. While the highest priority
queue histogram spreads from 100ms to 1500ms,otliest
Fig. 12.CPU utilization for last five commands in 25ms, 50ms and 100ms priority histogram is concentrated below 400ms. The

80
70 -
60 -
50
40

CPU Utilization (%)

30 4

20 +

10

versions. probability is 65% to stay under than 100ms, 81%eurthan
200ms and 97% under than 300ms, even in an ovedbad
80 situation.

70

B. Comparing tick time values

The tick time must be correctly dimensioned oncéas
high impact over equipment performance. Three tioke
values were tested: 25ms, 50ms and 100ms. In thdoaded
situation of the last five commands, looking at Eig. 9, the
software behavior differs on each version. The tvaese,
consideringwaiting time, occurred at the 25ms version, in
which queues have peaks greater than 1s. Beside$, O

1 P 3 4 5 6 7 8 response time increases 15%.
Time (s) At each tick, main process can drive more than axt®n.
For instance, if two ONUs must be checked in thet iek
Fig. 13.Throughput for last five commands in 25ms, 50ms and 100ms time, these checks will happen in the same tick: this
versions. reason, a small tick time reduces the number dbretto be

The last measure obtained by our log scheme was cP{pcessed in the same call. Consequentiyaround time is
response time. For that, we've used the last five commands iHEdu_CEd’ iﬁ shodwnt!n F.'g' 1?' _Ho_\:c_/evetr, comparirth wiher
our script as the start trigger and the evé@itT configuration versions, this reduction is not signincant. L

o . . Both versions 50ms and 100ms have a gmading time
saved” as the expected result. After running the scfiir : o L
. , . .) i behavior, as shown in Fig. 9, nevertheless 100msiare is
times, we've obtained the following results: thesmage time

. . . ; . better, as high and low priority queues remain Ipwe
vyas 6.688s; the minimum time was 6.519s; and therman compared to 50ms version, during almost the ertit.
time was 6.782s.

Consideringturnaround time in Fig. 10, 100ms version has
eight high amplitude peaks (greater than 100mstead of
two at the 50ms version. It happens whereas 100srsion
A. Turnaround and waiting time accumulates many actions to be processed in theirie call.
These peaks are dangerous and must be avoided.

When the OLT is idle, OS and tick time keep the CPU
running, creating a minimum amount of messages ihsa

?ome Fl_mpeosrta;]nt g\l;o.rtr_natlon d::an be w(;f(ta:rreollc fr(tnlzn m?.u interval. This amount is directly related to thekttime, thus at
IMe. 9. © showsvaiting andturnaround ime for the entire ., 19 messages are created for 100ms, at l@dst 30ms,

test, _m?‘r"s were plotted for_ e‘?‘ch operator COMMANG4 at least 40 for 25ms. It is also remarkablé the 25ms
associating cause and effect, which is importantigbugging version does not have the required throughput texgss the

and troubleshoqtlng. . . message that arrives at all tick times, oncethtsughput is
In that experiment, a 50ms tick time was used, taen less than 40 messages, as shown in Fig. 11. Thes 5

turnaround time greater than this value may represent 200ms versions have enough throughputs to haneieick
performance issue and must be checked by the demmsloin time messages

order to solve this kind of problem, messages takiore than
50ms may be split in two or more messages thatlegesthan C. Coherencein CPU utilization

50ms to be processed. As mentioned in Section |, the scheduler was sugpds
Concerningnaiting time, we've got values greater than 1.5seep the CPU as busy as possible during heavy Inabe test

It might be a problem, depending on how fast thetesy is equipment, OS and other processes use approxinieétyof
expected to respond to a command and even on memei¥y time. In Fig. 12, it is possible to notice tHat all

60

50
40 - m25ms

30 m50ms

Number of messages

100ms
20 ~

10

V. RESULTS EVALUATION

Evaluating the results presented in the previousiase is
possible to verify that the proposed scheme is useful and

versions, CPU utilization reaches approximately 9@8hich [5]
shows that, for this parameter, the scheduler ispgnly (6]
fulfilling its role.

On the operator’s viewpoint, the system continuEspting
commands and answering even under heavy load, i.e.,
degradation occurs in a coherent way (the systeas dmwt
collapse). It occurs even with the low throughp&tl®60ms
version shown in Fig. 13.

Another way to analyze scheduler coherence using ou
method is to comparevaiting time curves for multiple
instances of an experiment. The resulting curvesalf
instances should have almost the same behavior, and
commands should have almost the saesponse time. This
curve may be used to compare different versions) &g. 9.

VI. CONCLUSION

In this paper, we propose a new scheme to colladt a
analyze CPU resources in an embedded software aslng
system. Tickets are sent to a remote computer gir&lDP/IP
over Ethernet. When each ticket is created, a tangs, with
1ms of precision, is attributed and the tickettésexd in a local
buffer. When embedded software is idle, ticketshia buffer
are sent to another computer where they will beest@and
processed.

The queue input and output, and the end proceskhigit
the path of the messages in a multitask softwahedider.
Using the time information embedded on these tiket can
directly calculateturnaround and waiting time. With some
indirect processing, th€PU utilization, the throughput and
theresponse time may be calculated too.

An OLT GPON was used as a study case; data wascted
and the analysis helped to identify the better ticle interval,
50ms. A histogram ofwaiting time shows high and low
priority queues behaviors with all high priority ssages
processed with less than 400ms while low prioridaahes
1.5s.

Analyzing CPU utilization andresponse time in heavy load,
we've noted that the system kept running withowt pioblem,
even wherCPU utilization reaches 90%.

For future work, more tests could be done with pthe
equipment, employing the same Ilog system. Other
improvements in log processing may involve the tio@aof
log tickets to report memory allocation. Memoryligétion
must be monitored to identify issues such as menaatly or to
predict when equipment will run out of memory.

REFERENCES

[1] K. Ramamritham and J.A. Stankovi&heduling Algorithms and
Operating Systems Support for Real-Time Systems. Proc. IEEE, vol. 82,
no. 1, pp. 55-67, Jan. 1994.

[2] T.Yen and W. WolfPerformance Estimation for Real-Time Distributed
Embedded Systems, IEEE Trans. on Parallel and Distrib. Syst., @l.
no. 11, pp. 1125-1136, Nov. 1998.

[38] F.Machado and L. Maia, “Arquitetura de Sistemag@pionais,”
Edition, Livros Técnicos e Cientificos, 1997.

[4] R. FreyerFPGA Based CPU Instrumentation for Hard Real-Time
Embedded System Testing. SIGBED Rev., vol. 2, no. 2, pp. 39-42, Apr.
2005.

Gigabit-capable Passive Optical Networks (GPONY-TTRec. G.984,
2003.
H. M. Deitel, “Operating Systems,"®Edition, Addison Wesley, 1990.

