
 
 

Time survey on embedded software using remote IP 
log system: a GPON study case 

 

Abstract—Many telecommunications equipment must be able 
to deal with different terminals simultaneously, therefore they 
must have some sort of CPU time sharing. Converting tasks in 
messages to send to a fair scheduler is widely employed for that, 
however understanding CPU times is still a challenge. In this 
paper we propose a new scheme to remotely recover CPU 
resources information from embedded software using logger over 
Ethernet UDP/IP. We propose three log tickets, one when a 
message enters a message queue, other when a message exits the 
queue and the last when the software finishes message processing. 
With these three new tickets, we can calculate the time interval 
that a message waits in the queue and the time that the message 
takes to be processed. We implemented this log scheme in a real 
GPON OLT successfully, obtaining precision of 1 ms. With this 
new system, we were able to quickly identify time issues such as 
thread invasion and messages that must have higher priority. 

Index Terms— Remote log, time survey, inter-process queue, 
processing time, CPU occupation. 

I. INTRODUCTION 

Telecommunication systems, mainly in access networks, are 
composed by one aggregator and a set of terminals. Besides, 
all equipment must provide means to operators to configure 
the system and, nowadays, most of equipment can be 
configured by different ways at the same time. Therefore, 
aggregator’s CPU (central processing unit) must share time 
among many different processes. These cases characterize a 
multitask client/server system, where the operators are the 
clients and the aggregator’s CPU is the server that must fulfill 
the requests from different terminals and operators. 

Regardless computational method employed in the time 
sharing, it is important that all the resources (time, memory, 
etc.) fit some values for proper functioning of the whole 
system [1], [2]. Particularly, some of these resources are 
especially important: 

• CPU utilization: This is the percentage of the CPU time 
in use per time unit. The main goal is to maintain the 
CPU busy as long as possible [3]. 

• Throughput: Number of processes (or messages) 
executed per time unit [3]. 

• Turnaround time: Time spent by the CPU for each 
processing [3]. 

• Waiting time: Time that each process waits in the queue 
to start being processed by the CPU. 

• Response time: Time to the system to produce the task 
result. 

• Memory utilization: Amount of memory allocated in the 
process. 

When it comes to embedded software, getting this 
information is a very difficult task. Most of the time, these 
equipment have no operating system (OS) or the OS and/or the 
CPU do not provide the required information. On the other 
hand, if the system provides it, sometimes the system may not 
correctly identify who is the owner of the process that is 
causing the problem, since OS doesn’t know the software’s 
internal division. 

Providing a real-time and non-intrusive (RTNI) [4] way to 
get this information might be very helpful. In this paper, we 
propose a new scheme to remotely recover CPU timing 
information using a remote log system that runs over UDP/IP. 
This scheme is not totally RTNI, but the results are promising. 
Tests were made in an OLT (optical line terminal) of GPON 
(Gigabit-capability passive optical networks) [5] with success. 
Issues such as thread invasion and prioritization were quickly 
identified and fixed. 

In the next section, we describe how time sharing must be to 
work out with our method. In Section III, we describe the log 
scheme, how to create and how to process tickets. In Section 
IV, we present our real implementation in an OLT and show 
the collected results. Results are evaluated in Section V. 
Finally, in Section VI, conclusions are presented and some 
future work is proposed. 
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II.  SCHEDULER 

One may find in technical literature many different ways to 
share time between tasks using the same CPU. Our OLT uses 
tasks in a queue, which means that all new tasks are converted 
to a message in a queue of the scheduler as shown in Fig. 1. 
This method is widely employed in telecommunication 
equipment. 

 

Fig. 1. Example of scheduler block diagram. 

All events received by the CPU through hardware 
interruption are replaced by a new message stored in the 
message queue, represented in Fig. 1 by the arrow T1. The 
system should have more than one priority queue. When a new 
message is created, it should be assigned to a specific priority 
(or queue number). Continuously, the CPU gets the next 
message from one of the queues and processes it. The 
processing may also generate other messages to be stored in 
the queues. 

A scheduler must decide from which queue it will take the 
next message. Different criteria can be employed to make this 
decision, such as “Shortest Job First” and “Round Robin” [6]. 

The main advantage of our method is that all heavy 
processing is confined in the same thread, which reduces 
problems with concurrent processes and also the time spent 
with context swapping. On the other hand, an infinite loop can 
cause a deadlock in the equipment. 

All routines that process messages must be “on the fly”, i.e., 
these routines must take one message, execute their work as 
quick as possible and free the CPU. If the time to process the 
message is too long, other processes will be delayed, possibly 
causing problems. In this case, processes longer than a 
predetermined interval must be separated in a set of shorter 
processes. 

III.  LOG SCHEME 

A. Logger block diagram 

The log system is composed by one component, called 
Logger, compiled with the embedded application (in our 
example, an OLT GPON), and a standalone application, called 
WinLogger, that collects and processes ticket information in a 
remote computer. Logger’s block diagram is seen at Fig. 2. 

 

Fig. 2. GPON Logger block diagram. 

Main embedded software may create tickets in the Logger 
using three methods: 

• Start: This method must be called at the beginning of any 
function that intends to use Logger. It provides to 
Logger the function name e some log attributes.  

• Print: This method is called for any new ticket. It 
receives the ticket type and a formatting string and its 
arguments.  

• End: This method must be called at the end of any 
function that uses Logger. It informs to Logger that all 
information about the function is no longer necessary 
and it must be popped from the function stack inside 
Logger. 

As soon as these methods are called, Logger retrieves 
current time from the OS and creates a new ticket with that. It 
is important to preserve time information as close as possible 
to the event time. Our OLT OS provides time information with 
1ms of precision. 

Logger process completes the ticket with the function name 
and a sequence number. Then, it sends the ticket to WinLogger 
through UDP/IP. A ticket buffer is necessary once tickets can 
be created faster than the Ethernet port data transfer rate. 

WinLogger is responsible for remotely process logs. It has a 
ticket buffer to store all tickets sent by Logger. A Timing 
component compiles tickets to generate time reports. 

B. Ticket structure 

Ticket structure is shown in Fig. 3. Each ticket has only one 
event information and is wrapped in a UDP/IP packet. 

 

Fig. 3. Ticket structure 

Where: 
Num  � Ticket sequential number; 
YY  � Event year; 



 
 

MM  � Event month; 
DD  � Event day; 
hh  � Event hour; 
mm  � Event minute; 
ss  � Event second; 
msec � Event millisecond (precision = 1ms); 
FuncName � Name of the function that generates the ticket; 
Type � Event type. It identifies who has generated that 
message, for instance, CLI (command-line interface) or OMCI 
(ONT management and control interface); 
Id  � Message identification, used to correlate tickets to 
the same message; 
Priority � Queue or priority number. 
 

There is no retransmission. Packet loss can be identified by 
the sequential number “Num”, but no recovery system was 
implemented due to the high data volume. Therefore, Time 
process block in Fig. 2 must be prepared to resolve packet lost.  

C. Time survey tickets 

Using above structures, three new tickets were created to 
time survey (Fig. 3). These tickets are created using Logger’s 
Print method: 

• Push to queue: This ticket corresponds to the event of 
new message pushed into the queue. In Fig. 1, this 
event is represented by T1. 

• Init process: This ticket corresponds to the event of 
message popped from the queue and starting to be 
processed by the main process. In Fig. 1, this event is 
represented by T2. 

• End process: This ticket corresponds to the event of main 
process has finished to process message. In Fig. 1, this 
event is represented by T3. 

All tickets have an Id to identify a unique task that is used 
for synchronization. In the Push to queue, a Priority parameter 
identifies each priority queue that is used to store the task. It is 
important to follow priorities in scheduler and verify if it is 
correctly working. 

D. Time processing 

As discussed in section I, there are five relevant CPU times 
to be monitored. Considering T1 the time in ticket Push to 
queue, T2 the time in ticket Init process and T3 the time in End 
process. For each task, turnaround time and waiting time can 
be calculated using Eqs. 1 and 2, respectively.  

 
23 TTTTurnaround −=  (1) 

 
12 TTTWaiting −=  (2) 

CPU utilization and throughput need a time interval or time 
unit. We use a fixed interval of 1s. Therefore, CPU utilization 
for interval k, in percentage, may be calculated by Eq. 3. It is 
the ratio between all TTurnaround in a time interval by the time 
interval itself. 
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Where: 
Nk is the sequential number of the first Init process ticket in 

interval k; 
Nk+1 is the sequential number of the first Init process in 

interval k+1, which is 1 unit greater than the last ticket in 
interval k; 
∆TInterval is the time interval; 
TTurnaround(n) is the turnaround time for Init process ticket 

with sequential number n, calculated by Eq. 1.  
 
Eq. 4 represents the throughput for any time interval as the 

number of Init process tickets in the interval. Note that some 
intervals may not process any message; in this case, their 
throughput will be zero. 

 
kk NNthroughput −= +1
 (4) 

Response time depends on task result. In this case, a table, 
such as Table I, must be provided to WinLogger associating 
the task with its expected result. This table will be used to 
measure the response time of the system.  

 
TABLE I 

EXAMPLE OF TASK AND RESULTS TABLE FOR RESPONSE TIME TRIGGER. 
 

Command Result 

al Link activated 
aco ONU activated 
adf Ethernet flow activated 
dl Link deactivated 
cdf Ethernet flow configured 
rdf Ethernet flow removed 

 
This table uses two messages as shown in Fig. 4. A 

Received ticket identifies a command sent by the operator, 
which is considered the start of the task. An Event sent ticket 
identifies the answer sent by the application to operator, 
indicating the end of the task. 

 

Fig. 4. Trigger messages for response time  

Thus, Response time is: 

 TResponseTime = TEventSent - TReceived (6) 

Where: 
TEventSent is the time of Event sent ticket; 
TReceived is the time of Received ticket. 



 
 

IV.  TESTS AND RESULTS 

A. Test infrastructure 

In order to ensure the operation of the scheme proposed in 
this paper, we’ve implement it in a real GPON system. In this 
system, we monitor our OLT CPU usage. The CPU is 
responsible for 1024 ONUs (optical network units). Operators 
may use multiples CLI terminals and SNMP (Simple Network 
Management Protocol) to operate, administrate and maintain 
the system via Ethernet port or serial RS-232. All of these 
terminals send their tasks to the OLT CPU, which converts the 
tasks in messages as can be seen in Fig. 1. 

OLT software was written in C language and Logger 
component was compiled together. Logger uses a single 
UDP/IP port to send its tickets to a remote PC. 

WinLogger (Fig. 5), the software in the remote PC, is 
responsible for dealing with the tickets, saving and processing 
them and displaying reports. This must be done in real time, 
when tickets arrive from Logger or in batch, using saved 
tickets. In order to generate graphs, WinLogger saves these 
data in tables that can be opened in many different 
spreadsheets.  

 

Fig. 5. Tickets in WinLogger 

Note in Fig. 5, one “Ticket Lost!” message that was 
purposely generated to show how WinLogger deals with this 
problem. Some events are shown in this image too, which are 
used as task results for response time. 

B. Test methodology 

The operator may configure GPON using OLT’s CLI. In our 
tests we’ve employed scripts to help us to keep coherence 
between tests. Scripts’ times are not precise, but they are 
precise enough for our tests once we have some messages as 
triggers such as those mentioned in Fig. 4. 

Besides our embedded application, OLT’s CPU has other 
software running in background (including OS) that may 
interfere in the tests results. To minimize it, we’ve run the 
same tests many times and have taken average values. 

We’ve defined the scripts to include many different 
operations with different needs. Some GPON instructions 
spend more CPU time, while others need more network traffic. 
Our main script follows the sequence bellow. 

1. Activate Link 1. 

2. Create two ONUs in Link 1. 
3. Activate ONU 1. 
4. Activate ONU 2. 
5. Create 10 Ethernet flows in ONU 1. 
6. Create 10 Ethernet flows in ONU 2. 
7. Activate all Ethernet flows in ONU 1. 
8. Activate all Ethernet flows in ONU 2. 
9. Save all configurations. 
10. Get ONU 1 configuration. 
11. Deactivate all ONUs in Link 1. 
12. Deactivate Link 1. 
 
The Table II shows commands at a log and their elapsed 

time. These commands can be easily synchronized with CPU 
resources information. 

 
TABLE II 

OPERATORS' COMMANDS IN LOG WITH ITS ELAPSED TIME. 
 

Elapsed 
Time 

Operator Command 

16221 Sat Jan  1 00:02:19.189 2000 Control_Message()-> OPERAT : "Save OLT configurations", IP:XML File 
31625 Sat Jan  1 00:02:34.593 2000 Control_Message()-> OPERAT : "Activate Link 0.0", IP:10.4.1.98 
33029 Sat Jan  1 00:02:35.997 2000 Control_Message()-> OPERAT : "New ONU 0.0.1", IP:10.4.1.98 
35065 Sat Jan  1 00:02:38.033 2000 Control_Message()-> OPERAT : "Activate ONU 0.0.1", IP:10.4.1.98 
60077 Sat Jan  1 00:03:03.045 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.2", IP:10.4.1.98 
61137 Sat Jan  1 00:03:04.105 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.3", IP:10.4.1.98 
62213 Sat Jan  1 00:03:05.181 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.4", IP:10.4.1.98 
63276 Sat Jan  1 00:03:06.244 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.5", IP:10.4.1.98 
64328 Sat Jan  1 00:03:07.296 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.6", IP:10.4.1.98 
65387 Sat Jan  1 00:03:08.355 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.7", IP:10.4.1.98 
66472 Sat Jan  1 00:03:09.440 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.8", IP:10.4.1.98 
67526 Sat Jan  1 00:03:10.494 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.9", IP:10.4.1.98 
68578 Sat Jan  1 00:03:11.546 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.10", IP:10.4.1.98 
69637 Sat Jan  1 00:03:12.605 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.1.11", IP:10.4.1.98 
70707 Sat Jan  1 00:03:13.675 2000 Control_Message()-> OPERAT : "Activate Ethernet 0.0.1.0", IP:10.4.1.98 
80735 Sat Jan  1 00:03:23.703 2000 Control_Message()-> OPERAT : "New ONU 0.0.2", IP:10.4.1.98 
82741 Sat Jan  1 00:03:25.709 2000 Control_Message()-> OPERAT : "Activate ONU 0.0.2", IP:10.4.1.98 
107822 Sat Jan  1 00:03:50.790 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.12", IP:10.4.1.98 
108877 Sat Jan  1 00:03:51.845 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.13", IP:10.4.1.98 
109936 Sat Jan  1 00:03:52.904 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.14", IP:10.4.1.98 
111029 Sat Jan  1 00:03:53.997 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.15", IP:10.4.1.98 
112077 Sat Jan  1 00:03:55.045 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.16", IP:10.4.1.98 
113131 Sat Jan  1 00:03:56.099 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.17", IP:10.4.1.98 
114189 Sat Jan  1 00:03:57.157 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.18", IP:10.4.1.98 
115248 Sat Jan  1 00:03:58.216 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.19", IP:10.4.1.98 
116327 Sat Jan  1 00:03:59.295 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.20", IP:10.4.1.98 
117379 Sat Jan  1 00:04:00.347 2000 Control_Message()-> OPERAT : "New Ethernet 0.0.2.21", IP:10.4.1.98 
118431 Sat Jan  1 00:04:01.399 2000 Control_Message()-> OPERAT : "Activate Ethernet 0.0.2.0", IP:10.4.1.98 
128470 Sat Jan  1 00:04:11.438 2000 Control_Message()-> OPERAT : "Get Info Application ", IP:10.4.1.98 
129521 Sat Jan  1 00:04:12.489 2000 Control_Message()-> OPERAT : "Deactivate ONU 0.0.1", IP:10.4.1.98 
130601 Sat Jan  1 00:04:13.569 2000 Control_Message()-> OPERAT : "Deactivate ONU 0.0.2", IP:10.4.1.98 
131736 Sat Jan  1 00:04:14.704 2000 Control_Message()-> OPERAT : "Deactivate Link 0.0", IP:10.4.1.98 
132748 Sat Jan  1 00:04:15.716 2000 Control_Message()-> OPERAT : "Save OLT configurations ", IP:10.4.1.98 

 
In order to test priority queues, two priority queues were 

employed. The highest priority is reserved to an internal 
periodic process. Messages that give command feedback to 
operator and hardware feedbacks were delivered using the 
lowest priority queue. 

The tests were executed using two different scheduler 
algorithms: a strict priority algorithm, where the messages in 
higher priority queues are delivered first, and a round-robin 
algorithm without priority. The period used for the periodic 
process, or tick time, was also changed during the tests. Our 
default tick time is 50ms, but we've tested 25ms and 100ms as 
well, resulting in six applications composing our test set.  

C. Test result 

Running the script above, we’ve captured log tickets using 
WinLogger. Each test produces graphs of turnaround and 
waiting time.  

The graph in Fig. 6 shows turnaround and waiting time for 
50ms of tick time. The marks for each operator command 
show when these commands were sent. 



 
 

 

Fig. 6. Turnaround and waiting time for 50ms version. 

Fig. 7 shows the last five commands from the graph in Fig. 
6. And Fig. 8 shows waiting time histogram for high and low 
priority queues. In this histogram, tickets were grouped in 
portions of 10ms. 

 

Fig. 7. Turnaround and waiting time for last five commands for 50ms version. 

 

Fig. 8. Waiting time histogram for the last five commands in 50ms version. 
Curves for Q1 (high priority queue) and Q2 (low priority queue). 

Comparing 25ms, 50ms and 100ms tick time versions, for 
the last five commands, Fig. 9 shows three waiting times, and 
Fig. 10 shows three turnaround times. 

 

Fig. 9. Waiting times for 25ms, 50ms and 100ms tick time versions. 

 

Fig. 10. Turnaround times for 25ms, 50ms and 100ms Tick Time versions. 

Fig. 11 shows the throughput in the CPU. Tests were made 
with 25ms, 50ms and 100ms versions. To improve 
visualization, Fig. 12 and Fig. 13 show, respectively, CPU 
utilization and throughput for last five commands. 

 

Fig. 11. Throughput for 25ms, 50ms and 100ms versions. 



 
 

 

Fig. 12. CPU utilization for last five commands in 25ms, 50ms and 100ms 
versions. 

 

Fig. 13. Throughput for last five commands in 25ms, 50ms and 100ms 
versions. 

The last measure obtained by our log scheme was CPU 
response time. For that, we’ve used the last five commands in 
our script as the start trigger and the event “OLT configuration 
saved” as the expected result. After running the script four 
times, we’ve obtained the following results: the average time 
was 6.688s; the minimum time was 6.519s; and the maximum 
time was 6.782s. 

V. RESULTS EVALUATION 

A. Turnaround and waiting time 

Evaluating the results presented in the previous section is 
possible to verify that the proposed scheme is very useful and 
some important information can be inferred from the CPU 
time. Fig. 6 shows Waiting and turnaround time for the entire 
test, marks were plotted for each operator command 
associating cause and effect, which is important for debugging 
and troubleshooting. 

In that experiment, a 50ms tick time was used, then any 
turnaround time greater than this value may represent a 
performance issue and must be checked by the developers. In 
order to solve this kind of problem, messages taking more than 
50ms may be split in two or more messages that take less than 
50ms to be processed. 

Concerning waiting time, we’ve got values greater than 1.5s. 
It might be a problem, depending on how fast the system is 
expected to respond to a command and even on memory 

limitations, as the queue length tends to increase significantly 
in this situation. The last four commands, better visualized in 
Fig. 7, were sent to the OLT before the previous command had 
been completed, causing message accumulation in the queues 
and, consequently, increasing the waiting time. 

Processing a message may create other messages and ONU 
deactivation command is one of the commands that triggers a 
lot of hardware callbacks, which are the reason why, after 
ONU deactivation, approximately at 130s in Fig. 7, the waiting 
time starts to increase. 

The priority queue efficiency can be analyzed using the 
waiting time histogram in Fig. 8. While the highest priority 
queue histogram spreads from 100ms to 1500ms, the lowest 
priority histogram is concentrated below 400ms. The 
probability is 65% to stay under than 100ms, 81% under than 
200ms and 97% under than 300ms, even in an overloaded 
situation. 

B. Comparing tick time values 

The tick time must be correctly dimensioned once it has 
high impact over equipment performance.  Three tick time 
values were tested: 25ms, 50ms and 100ms. In the overloaded 
situation of the last five commands, looking at the Fig. 9, the 
software behavior differs on each version. The worst case, 
considering waiting time, occurred at the 25ms version, in 
which queues have peaks greater than 1s. Besides, OLT 
response time increases 15%. 

At each tick, main process can drive more than one action. 
For instance, if two ONUs must be checked in the next tick 
time, these checks will happen in the same tick. For this 
reason, a small tick time reduces the number of actions to be 
processed in the same call. Consequently, turnaround time is 
reduced, as shown in Fig. 10. However, comparing with other 
versions, this reduction is not significant. 

Both versions 50ms and 100ms have a good waiting time 
behavior, as shown in Fig. 9, nevertheless 100ms version is 
better, as high and low priority queues remain lower, 
compared to 50ms version, during almost the entire test. 
Considering turnaround time in Fig. 10, 100ms version has 
eight high amplitude peaks (greater than 100ms), instead of 
two at the 50ms version. It happens whereas 100ms version 
accumulates many actions to be processed in the tick time call. 
These peaks are dangerous and must be avoided. 

When the OLT is idle, OS and tick time keep the CPU 
running, creating a minimum amount of messages in a 1s 
interval. This amount is directly related to the tick time, thus at 
least 10 messages are created for 100ms, at least 20 for 50ms, 
and at least 40 for 25ms. It is also remarkable that the 25ms 
version does not have the required throughput to process the 
message that arrives at all tick times, once its throughput is 
less than 40 messages, as shown in Fig. 11. The 50ms and 
100ms versions have enough throughputs to handle the tick 
time messages. 

C. Coherence in CPU utilization 

As mentioned in Section I, the scheduler was supposed to 
keep the CPU as busy as possible during heavy load. In the test 
equipment, OS and other processes use approximately 10% of 
CPU time. In Fig. 12, it is possible to notice that in all 



 
 

versions, CPU utilization reaches approximately 90%, which 
shows that, for this parameter, the scheduler is properly 
fulfilling its role.  

On the operator’s viewpoint, the system continues accepting 
commands and answering even under heavy load, i.e., 
degradation occurs in a coherent way (the system does not 
collapse). It occurs even with the low throughput of 100ms 
version shown in Fig. 13. 

Another way to analyze scheduler coherence using our 
method is to compare waiting time curves for multiple 
instances of an experiment. The resulting curves of all 
instances should have almost the same behavior, and 
commands should have almost the same response time. This 
curve may be used to compare different versions, as in Fig. 9. 

VI.  CONCLUSION 

In this paper, we propose a new scheme to collect and 
analyze CPU resources in an embedded software using a log 
system. Tickets are sent to a remote computer through UDP/IP 
over Ethernet. When each ticket is created, a timestamp, with 
1ms of precision, is attributed and the ticket is stored in a local 
buffer. When embedded software is idle, tickets in the buffer 
are sent to another computer where they will be stored and 
processed. 

The queue input and output, and the end processing delimit 
the path of the messages in a multitask software scheduler. 
Using the time information embedded on these tickets, we can 
directly calculate turnaround and waiting time. With some 
indirect processing, the CPU utilization, the throughput and 
the response time may be calculated too.  

An OLT GPON was used as a study case; data was collected 
and the analysis helped to identify the better tick time interval, 
50ms. A histogram of waiting time shows high and low 
priority queues behaviors with all high priority messages 
processed with less than 400ms while low priority reaches 
1.5s. 

Analyzing CPU utilization and response time in heavy load, 
we’ve noted that the system kept running without any problem, 
even when CPU utilization reaches 90%. 

For future work, more tests could be done with other 
equipment, employing the same log system. Other 
improvements in log processing may involve the creation of 
log tickets to report memory allocation. Memory utilization 
must be monitored to identify issues such as memory leak or to 
predict when equipment will run out of memory. 
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