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DIFFERENT NUMERICAL APPROACHES IN THE ANALYSIS OF
DIELECTRIC OPTICAL WAVEGUIDES

M. Silveira(*), W. N. A. Pereira(*),  J. A. J. Ribeiro(*), A. Gopinath(• )

Abstract - The main purpose of this paper is to
stablish a comparison between some finite element
and finite difference techniques to solve the wave
operator together with the boundary operator. We
have applied numerical implementations to three
dielectric structures, and the results are presented
by proceeding normalization on the wavevector
and the propagation constant.

Index Terms - Optical Waveguides, Numerical
Methods, Propagation Constant

I.  INTRODUCTION

We can formulate the study of the propagation of a
light optical signal in dielectric waveguides in terms
of longitudinal components of the H field or trough
the transverse components. In recent publications the
main purpose of the authors has been to eliminate all
spurious modes [1]-[5]. The Finite Element Method
has been used in the analysis of a large number of
optical waveguides with excellent results for the
propagation constant [6]-[10].

Another recent results by using finite difference
for rectangular dielectric structures have been adding
substantial contributions to the broad area of optical
waveguides problems [11]-[13]. In all the techniques
presented in this paper, we are imposing boundary
conditions on the interfaces between distinct dielectric
materials. Some of these techniques impose continuity
on the boundary interfaces [14]-[15], as well as
longitudinal and transverse continuity conditions has
boarded [17]-[23].

The sparsity property of the eigenvalues/vectors
matrices involved in the numerical approaches is a
fundamental step to solve the further generalized
eigenvalue equations. The great contribution of this
paper is the extension of the penalty function method
for the complex case, which permit us to calculate the
gain for the channel waveguide.

II.  THEORETICAL FORMULATION

We assume Ht is the transverse component of the
field, and ∇ t is the associated transverse operator.
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For the propagation of the light optical signal in the z-
direction with exponential decay  zie β−  and each
region of the guide has a piecewise constant εr , the
wave equation in Cartesian coordinates  implies that:

( ) ( ) 00 222222 =β−+∇=β−+∇ yytxxt HkHHkH w

here 21
oo

2 )( µεεω= rk , assuming µr = 1. After
proceed integration over each region, we get:

( ) 022 =β−+⋅� �� dAkNdSH

j,i j,ic r

a (1)

where a = x or y, ci,j = boundary of the regions ri,j, N
= unit vector outward normal of ci,j .

If we place the nodes of the mesh on the interfaces
and by imposing the boundary conditions of Ht, the
longitudinal continuity of the components Ez and Hz
can be transformed in an equivalent system of the
form:
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for the i-jth interface.

III.  NUMERICAL DISCRETIZATIONS

We can proceed the analysis of the above system
by using finite-difference or finite element solution,
which are the more used numerical techniques to
study this kind of problem. A brief resume of different
numerical approaches to study this system we present
bellow.

III.1.  A FINITE DIFFERENCE APPROACH

A discretization for the wave equation for the Hx
and the Hy components can be made by analyzing the
system (1) and (2), simultaneously. In this case, the
finite-difference technique results in the eigenvalue
matrix equation

U.B.U.C λ=
where:
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The matrices Cxx and Cyy are five diagonal while
Cxy, Cyx, Bxx and Byy are three diagonals with B non-
singular. Thus, we reduce our analysis to an
equivalent eigenvalue problem in the form:

X.X.A λ=

where: BCBA ..1−= , and UBX .= . In order to analyze
only the guiding region, we can restrict our study on
the last equation only for a few numbers of positive
eingenvalues of the matrix C.

Basically, by using the Arnold algorithm and the
Krylov basis, we can construct a sequence of extreme
eigenvalues of an H Hessenberg matrix which
approximates the eigenvalues of A. The Arnold
method can detect the predictor error and stops the
convergence of the sequence. In addition, by using the
Schur-Wieland deflation process, we found an enough
close approximation of the further positive
eigenvalues after we get the first largest one. Finally,
the s-step Orthomin method permits to reduce our
problem and to get the initial step of the convergence
by the inverse power numerical technique. We omit
more details, which we can find in the reference [17].

III.2.  A FINITE ELEMENT APPROACH

We can define the functional:
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The set D is the cross-section of the guide, and in
our study: f1 = Hx and f2 = Hy. If we subdivide the
dielectric guide region in a right triangular mesh, our
problem is transformed in to minimize the
components of the functional F with respect the nodal
values of Hx and Hy, and we get the following general
complex eigenvalue equivalent problem:

[S].[H] = β2[S][H] (3)
The continuity boundary condition for the operator

in this case transforms the problem in another
eigenvalue problem, like:

[R].[H] = λ[I].[H] (4)
where [I] is the Identity Matrix and [R] is singular.

At first, we search solutions of the last equation for
0=λ . The matrix of the eigenvectors [Z] are related

with [H] and the new vectors [C] of this equation
according the relation:

[H] = [Z].[C] (5)

Now, if we define:

[S1] = [Zt].[S].[Z]         [T1] = [Zt].[T].[Z]

we can derive an equivalent eigenvalue matrix
equation:

[S1].[C] = β2[T1][C] (6)

After, we solve this equation for the unknowns β
and C. Thus, by using (5), we get the original vector
[H] which solves our initial problem. Details of this
technique are available in the reference [14].

III.3.  A FINITE ELEMENT PENALTY METHOD

We can use the same general complex eigenvalue
equivalent problem presented in equation (3), where
the eigenvalue problem related with the boundary
condition (4) can be wrote in the form:

[B].[H] = 0

where B = R − λI.
Our main purpose is to solve the coupled system

composed by the first general eigenvalue complex
system (3), and the second new boundary condition
system (6) wrote above. Suppose that H1 is a solution
of the first problem, and H2 is the solution of the
second one. Thus, we search a solution of the main
problem which depends linearly on H1 and H2, that is
a solution: H = αH1 + γH2.

The linear property of the [S] operator permits to
set a scaling process on the first eingenvalue problem.
If we define: H = (1/α).H , our previous problem is
transformed in: “Find a vector field H = H1 + ξH2 of
system (3), where the operator S is changed by [S1] =
[S + ξ.B], with ξ a small positive parameter.” The new
operator [S1] is a small perturbation of the initial
operators [S] and [B].

The great contribution of this technique is the fact
that we do not require finding the kernel of the
operator [B], and so we have a reduction in the
number of the full matrix equations. The operator [S1]
retains the sparse property of [S], and so the sparse
matrix routines can be used. Although [S1] is no
longer symmetric and positive definite, has relevant
importance the fact that [T] retains these properties.
More details we can see in the reference [16] and
[18-21].

IV.  SOME RESULTS

We apply our previous studies for three dielectric
waveguides. The results can be compared with the
numerical approaches mentioned in [3]-[6], and [14]-
[22]. We include a comparison between finite-
difference and finite-element numerical techniques
too, as was discussed previously.

At first, we consider the quantum well ridge
waveguide optical structure (MQW). The dimensions
for the guide are given in the insert of Fig. 1. The
results for different width (w) at two different etch
depth (h) and two different aluminum compositions
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are included in the Figure. We plot the refractive
index (η) versus the width (w). As we can see, there is
an excellent agreement between the curves from [4],
and the results from the penalty function method [16],
[18]-[21]. The penalty factor (PF) used for all
simulations is 1.0, the wavelength is 0.86µm, and

o/kβ=η , where oo /2 λπ=k .

In the second example, we would like to show the
results for the square dielectric waveguide with
weakly coupled modes. Since the guide is two folds
symmetric, we solve the systems only for one quarter
of the local guide with appropriate boundary condition
along the vertical and horizontal axis of symmetry.

Fig. 1 – Effective index of refraction for different widths (w) of the ridge at different heights and different
Aluminum compositions.

Fig. 2 – Plot of the normalized constant B versus the normalized frequency V for air clad square dielectric
waveguide.

The results for the fundamental mode (Hx11 and
Hy11) and the first order mode (Hx21) are given in
Fig. 2. The dimensions of the structure used in the
simulation are inserts in it too. As we can see, the
Penalty Function Method results matches the results
from [5] very well. For a purely quasi-TE or TM

modes, the PF used for all simulations, is 0.01.
Decreasing the PF bellow 0.01 does not affect the
results at all. The normalized frequency is
V = (2π /λ).a.(ε1 - ε2)1/2, while the normalized
constant is calculated by  B = {(β)2 / .[(ko)2 - 1]} / (ε 1
- ε o).
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Next, we consider the case of a circular optical
dielectric waveguide. In this case, the guided step
index optical fiber structure has the presence of highly
coupled modes. Unlike, the square waveguide, the
modes in a circular waveguide are hybrid due to his

geometry. Again, since the guide is two folds
symmetric, we solve only for a quarter of the total
guide with an appropriate boundary condition along
the vertical and horizontal axis of symmetry.

Fig. 3. Plot of the normalized constant B versus the normalized frequency V for a weakly guided step index fiber

Fig. 4. Gain curve of the channel dielectric waveguide.

The results of the simulations for the fundamental
mode (LP01) and the first higher order mode (LP11)
are given in Fig. 3. As shown in this Figure there is
complete agreement between the results using the
Penalty Function Method [16], [18]-[20] and the
analytical results of [6]. In this case, we adopt
PF = 1.0 for all simulations. The expressions for the
normalized frequency and the propagation constant
are similar the second example. In this case, we need
do use the radius r instead of the length a in the
expression of the normalized frequency V.

Finally, we present the gain curve for the channel
waveguide where the presence of loss can be take into
account by using the Penalty Function Method. The
gain is obtained when the imaginary part of the
complex dielectric constant (ε") is a positive value. On
the other hand, we can get the attenuation when this
constant has negative value (as show inside the
cladding region of the guide). In Fig. 4 the dimensions
of the structure and the results are presented. We
analyze two different cases: in the first one there is no
loss in the cladding, while in the second one it
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appears. There is an excellent agreement with the
results showed in [7]-[8] and those presented in [18]-
[20].

The gain is g = Im(γ) / [2Real(γ)1/2 (ko)]. We
assume that η = η ' + jη", with η" << η', and η = (ε' ±
jε ")1/2. As expected, the PF used is 0.01 because the
modes are weakly coupled.

V.  CONCLUSIONS

In all the theoretical arguments presented above
the fundamental importance is the fact that all full
matrices involved in the calculus of the
eigenvalue/vectors have sparse form, which implies in
a very fast convergence in the computations. The
values of the propagation constant stay near of the
product of the wavevector's amplitudes and the
maximum dielectric constant, when the frequency
oscillates in a neighborhood of the cut-off region.

We have obtained very close results for the MQW
and the channel waveguide structures. Although, in
the first case, we have a narrow guided region to get
the convergence of the eigenvalues/vectors, and so we
needed to use a very large number of nodes in the
Mesh.
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