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Abstract - This paper proposes a novel call admission 
control (CAC) scheme for wireless mobile networks. 
Our proposal avoids per-user reservation signaling 
overhead and takes into account the expected 
bandwidth to be used by calls handed off from 
neighboring cells based only on local information 
stored into the current cell where user is seeking 
admission. To this end, we propose the use of two time 
series-based models for predicting handoff load: the 
Trigg and Leach (TL), which is an adaptive 
exponential smoothing technique, and ARIMA 
(Autoregressive Integrated Moving Average) that uses 
the Box & Jenkins methodology. These methods are 
executed locally by each base-station or access router 
and forecast how much bandwidth should be reserved 
on a periodic time window basis. The two prediction 
methods are compared through simulations in terms 
of new call blocking probability and handoff dropping 
probability. Despite the TL method simplicity, it can 
achieve similar levels of call blocking probability and 
handoff dropping probability than those of the 
computational demanding ARIMA models. In 
addition, depending on the schemes settings, the 
prediction methods can grant an upper bound on 
handoff dropping probability even under very high 
load scenarios. The proposal is also improved with an 
adaptive approach to achieve a better bandwidth 
utilization. 

Keywords - Call Admission Control, Wireless and 
Mobile Networks, Quality of Service, Scalability, Time 
Series Analysis  

I. I NTRODUCTION  

The combination of Internet and mobile 
communications suggests that a coming trend will be an 
increasing demand for IP based wireless/mobile access to 
traditional and multimedia applications with varying 
quality of service (QoS) requirements. Figure 1 illustrates 
an envisioned scenario with heterogeneous wireless 
technologies integrated through IP mobility aware 
protocols  (Mobile IPv4/IPv6, Cellular IP, Hawaii, etc.) 
that will seamlessly interwork with the global 
Internet[13], [14]. 

The research effort is especially challenging when 
dealing with provisioning of quality of service (QoS) 
guarantees. Users applications may experience 
performance degradation due to the properties of wireless 
channels and due to user mobility from handoffs. Handoff 

in wireless/mobile networks is the mechanism that 
transfers an ongoing call from the current cell as the 
mobile station (MS) moves through the coverage area of 
the system.  If the target cell does not have sufficient 
available bandwidth, the call will be dropped. From the 
user’s point of view handoff dropping is less desirable 
than the blocking of a new call. 
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Figure 1.  A scenario for all-IP mobile and wireless 
networks. 

An important component for mobile/wireless 
networks is the Call Admission Control (CAC) 
mechanism. It must be used to address the mobility 
effects, accepting or rejecting new users in the network. 
CAC schemes not only have to ensure that the network 
meets the QoS of newly arriving calls if accepted, but 
should also guarantee that QoS of existing calls does not 
deteriorate. 

On the other hand, Internet frameworks for QoS 
provisioning rely, basically, on two architectures: 
Integrated Services (IntServ) [15] and Differentiated 
Services (DiffServ) [16]. While the IntServ architecture 
provides strict QoS guarantees through per-user explicit 
signaling for CAC and reservation using RSVP (Resource 
Reservation Protocol), it fails in providing the scalability 
objectives due its reservation-based approach. The 
DiffServ proposal aims at providing less strict QoS 
guarantees through packet classification at network 
ingress and differentiation of the treatment according to a 
set of classes named PHB (Per Hop Behavior), hence 
offering better network scalability. The Bandwidth 
Broker (BB) is a network entity proposed for 
implementing resource management policies in the 
DiffServ architecture, including the CAC mechanism[17]. 

In wireless and mobile networks, reservation of 
resources is more challenging than in wired networks due 
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the scarcity of bandwidth in wireless links. In our 
opinion, a scalable QoS architecture for wireless/mobile 
networks should provide CAC schemes that avoid 
excessive per-user signaling for wireless link reservation 
purposes.  

This paper proposes a novel call admission control 
(CAC) scheme for wireless and mobile networks. Our 
proposal avoid per-user reservation signaling overhead 
and take into account the expected bandwidth to be used 
by calls handed off from neighboring cells based only on 
local information stored into the current cell where user is 
seeking admission. To this end, we propose the use of 
two time series-based models for predicting handoff load: 
the Trigg and Leach (TL), that is an adaptive exponential 
smoothing technique[9], and the Autoregressive 
Integrated Moving Average (ARIMA) in conjunction 
with the Box & Jenkins methodology [10][11]. These 
models indicate how much bandwidth should be reserved 
on a periodic time window basis. The two proposals are 
compared through simulations in terms of new Call 
Blocking Probability (CBP), Handoff Dropping 
Probability (HDP) and Bandwidth Utilization. 
Furthermore, an analysis regarding the quality of the 
predictions depicts that the time window prediction 
interval should be set carefully to avoid overestimation 
and so the waste of the scarce wireless bandwidth. 
Despite the TL method simplicity, it can achieve similar 
levels of call blocking probability and handoff dropping 
probability than those of the computational demanding 
ARIMA models. In addition, depending on the schemes 
settings, the prediction methods can grant an upper bound 
on handoff dropping probability even under very high 
load scenarios. The proposal is also improved with an 
adaptive approach to achieve a better bandwidth 
utilization. 

The remainder of this paper is organized as follows. In 
section II, we describe the related research work. Section 
III gives an overview of the Trigg and Leach and ARIMA 
techniques for forecasting. We then present the novel 
CAC scheme in section IV. Performance results are 
presented in section V. Finally, concluding remarks are 
given in section  VI. 

II. R ELATED WORK  

Proposals for CAC in wireless/mobile networks 
present in the literature can be divided into two 
categories: fixed and dynamic strategies. Fixed strategies, 
such as the guard channel (GC) [1] scheme, give 
preferential treatment to handoff calls reserving a fixed 
number of channels exclusively for them. The advantage 
of this strategy is its simplicity because there is no need 
for the exchange of control information between base 
stations. However, this scheme is not flexible to handle 
varying traffic loads, since there is no information about 
current and neighboring cell’s load. 

Proposed dynamic reservation strategies [2],[3],[4], 
[5],[6],[7] extend the basic guard channel scheme 
according to the estimated handoff call rate derived from 
the number of calls in the neighboring cells and the 
mobility pattern of these calls to reserve bandwidth in 

advance in the next cell or in a group of cells. Resource 
reservation can be problematic, in general, due to the 
possibility of poor network utilization due to unnecessary 
blocking of new users and can get even worse if the 
reservation are made in several adjacent cells. 
Furthermore, these schemes imply a large amount of 
signaling overhead.  

The scheme proposed in [2] uses the aggregate history 
of handoffs in each cell to predict the probability a call 
will be handed off to a certain neighboring cell. Based on 
handoff prediction, the number of channels is reserved in 
advance. Each base station records the number of handoff 
failures and adjusts the reservation by changing the 
estimation window size. One problem with history-based 
schemes is the overhead to develop, store and update 
traffic histories for the different cells. Furthermore, due to 
short-term changes (e.g., diversion of traffic due to 
accidents) and medium-term changes (e.g., traffic re-
routing during road constructions), these estimates cannot 
be fully reliable.  

The call admission control proposed in [3] takes into 
consideration the number of calls in adjacent cells, in 
addition to the number of calls in the admission cell. The 
authors developed a theoretical model to compute the 
requirements for handoff requests in order to maintain a 
target handoff dropping probability. The proposed model 
assumes that all bandwidth requests are identical, which 
is not valid if multimedia services with varying 
bandwidth requirements are to be supported by the 
network. 

Next, we will describe some existing research that 
aims at optimizing bandwidth utilization (decreasing call 
blocking probability), but keeping low levels of dropping 
probability for handoffs.  

In [4] a predictive channel reservation (PCR) scheme 
based on mobile positioning systems (GPS - Global 
Positioning System) is proposed. This scheme makes 
predictive channel reservation for each MS based on its 
current position and orientation. The reservation is 
triggered if the MS reaches a certain threshold distance 
from the next cell. A reservation may be deemed invalid 
(false reservation) if the MS changes its moving direction. 
In this case, the cancellation of the reservation must be 
sent to de-allocate the reserved channel. Furthermore, 
rather than strictly mapping each reserved bandwidth 
portion to the MS that made the reservation, all reserved 
bandwidth is used as a generic pool to serve handoff 
requests but not new calls. When a MS arrives from a 
neighboring cell after a handoff, it may use bandwidth 
from the reserved portion if there is any available. 
Otherwise, the handoff connection will compete in the 
free bandwidth portion with other new call attempts. The 
HPCR (Hybrid PCR) scheme is a PCR variant, which 
integrates the threshold distance with GC, reserving a 
very small fixed portion of the bandwidth for handoffs. It 
was shown in [4], that this hybrid approach improves the 
handoff dropping probability without jeopardizing the 
bandwidth utilization. 

The ACR (Adaptive Channel Reservation) scheme 
was proposed in [5] and it is based on the PCR proposal, 
but it uses a threshold time instead of a threshold distance 
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to trigger the bandwidth reservation in the next predicted 
cell. The authors argue that using a threshold time permits 
a better control of the different degrees of mobility to 
trigger the reservation in the next cell, avoiding waste of 
bandwidth due to unused reservations. For example, 
considering a MS located in the overlapping area of two 
adjacent cells with a very slow moving speed of this MS 
(close to 0) and requiring a channel for its call. If the PCR 
scheme is used, two channels (each cell has one channel 
occupied) will be occupied by this call, one channel is 
used for communication in the current cell and the other 
is reserved for this call in the adjacent cell because the 
threshold distance was reached. Since the MS of this call 
is almost stationary, the reserved channel may not be used 
for the lifetime of this call. Consequently, PCR can lead 
to under-utilization of wireless channels. 

The PCR as well as the ACR schemes introduce a lot 
of signaling messages for reservation and cancellation of 
false reservations. Moreover, the reservations can 
decrease the dropping probability at the expense of 
increasing the blocking probability, what may give rise to 
poor network utilization. The use of GPS for predicting 
user mobility is also advocated in proposals [6],[7]. While 
such dynamic reservation-based schemes have 
demonstrated significant performance advantages over 
well engineered guard channels, the per-user dynamic 
reservation approach place computation and 
communication burdens on the network’s infrastructure 
which increases with the numbers of users and handoffs. 
Hence, the scalability and applicability of such solutions 
to future micro and pico-cellular networks is not well 
established. 

A similar approach to ours is proposed in [8]. The 
authors proposed a local predictive resource reservation 
for handoff based on the Wiener process (a Markov 
process where only the present value is relevant for 
predicting the future) and a methodology for granting an 
upper bound on HDP. To grant an upper bound on HDP, 
the amount of resource that must be reserved for future 
handoff demands should be set to the upper limit of the 
confidence interval for the predicted handoff load. In 
addition, the authors also use an ARIMA prediction 
method and show that the Wiener prediction obtained 
quite similar results for predicting the handoff demand 
based on traces collected from a single cell simulation 
scenario. The limited results obtained for the CBP and 
HDP metrics were depicted only for the Wiener-based 
proposal. The lack of performance results in terms of 
CBP and HDP for their ARIMA-based prediction seems 
to be justified by the very similar results obtained from 
the comparative trace analysis with the Wiener-based 
method conducted in that paper. As it will be shown in 
our paper, applying the methodology suggested in [8] 
could lead to bandwidth overestimation for handoffs. 
Furthermore, our ARIMA-based proposal differs 
significantly from that in [8] because we did not adopt the 
upper limit of the predicted handoff confidence interval to 
reserve bandwidth. Instead, we suggest directly the use of 
the predicted value by choosing an appropriate prediction 
time window size to avoid unnecessary reservations of 
the scarce wireless bandwidth. 

III. F ORECASTING PROCEDURES 

In this section we present a short description of the 
forecasting procedures used to evaluate the traffic load 
arriving at each cell.  

A time series can be defined as a realization of a 
stochastic process. Time series may enfold features such 
as trends and seasonality and one of the purposes of its 
analysis is the generation of forecast of future values. 
This procedure normally requires that time series present 
some kind of regularity in its behavior. Usually, future 
values are predicted based on past values, because a 
steadiness is assumed. This regularity in time series can 
be expressed through the concept of stationary time 
series[10]. Therefore, forecasting techniques are based on 
the idea that future can be predicted by discovering 
specific patterns of events in the past. Using time series 
modeling and analysis to predict bandwidth requirement 
in a computer network environment has lately become a 
useful and widespread tool. Researchers in the 
networking field are increasingly adopting modeling 
techniques widely used by econometricians and 
statisticians [12]. 

III.1 E XPONENTIAL SMOOTHING AND VARIANTS  

Exponential smoothing techniques have long been the 
methods of choice for univariate forecasting due to its 
accuracy and ease of use. They have become increasingly 
accepted because of their effortlessness and overall 
performance. It is highly recommended for short-term 
prediction. Among the simplest methods is the ordinary 
(simple) exponential smoothing, which assumes no trend 
and no seasonality whereas Trigg and Leach procedure 
could be seen as its adaptive approach. 

III.1.1 SIMPLE EXPONENTIAL SMOOTHING  

Let tY denote a univariate time series. Simple exponential 

smoothing assumes that the forecast Ŷ  for period ht + is 
given by a variable level â at period t  

tht aY ˆ=+ , (1) 

which is recursively estimated by a weighted average of 
the observed and the predicted value for tY . 

 
ttt YYa ˆ)1(ˆ αα −+=  (2) 

 1ˆ)1(ˆ −−+= ttt aYa αα  (3) 

where 10 << α  is known as the smoothing parameter 
(constant). The main drawback of this technique is the 
choice of the smoothing parameter since setting it close to 
1 could give rise to a highly reactive model. On the 
contrary, choosing the smoothing constant close to 0 
could lead to an insensitive model. 

III.1.2 A DAPTIVE EXPONENTIAL SMOOTHING : TRIGG 

AND LEACH  

In order to assist the selection of α  and to improve 
awareness capability of the predictor, a number of 
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adaptive methods have been recommended in the 
literature. The most representative and widely used is the 
Trigg and Leach [9] technique. Its mainly advantage rely 
on the fact that there is no need to specify the smoothing 
parameter previously. Trigg and Leach procedure can 
regulate the smoothing constant α  whenever a change 
occurs in the time series basic structure. Let 1+tα  be the 

one-step ahead smoothing parameter. So, the prediction in 
1+t  for the level is 

ttttt YYa ˆ)1(ˆ 1 αα −+=+  (4) 

t

t
t M

E=+1α  (5) 

where 

1)1( −−+= ttt EE ββε , (6) 

1)1( −−+= ttt MM βεβ  (7) 

and ttt YY ˆ−=ε  (prediction error at t ). 

Values close to zero point out a well-controlled 
prediction system (smaller prediction errors) whereas 
values near to the unity indicate an out of control 
prediction system (huge prediction errors). It is important 
to emphasize that 1+tα  allow the system to reconcile by 

not being too reactive to changes. But most importantly, 

tα will vary based on variations in the data pattern. 

III.1.2.1 TRIGG AND LEACH UPPER CONFIDENCE BOUND 

In order to offer statistical guarantees regarding the 
worst-case handoff dropping probability (HDP) for the 
next time interval, we may use predicted value as the 
upper confidence bounds for that predicted value as 
suggested in [8] for the Wiener process. For example, if 
the network operator has to guarantee a maximum target 
handoff dropping probability of 5%, the reserved 
bandwidth ψ  will be set to the 95% upper confidence 

bounds of the forecasted bandwidth requirements for 
handoff calls )(ΩE . This way, we can determine a level L 

such that HDPL −=≤Ω 1)(Prob . This level L is called 

%100*)1( HDP−  upper confidence bound for Ω . This 

value is given by: 










−
+Ω= 2

2
)( σ

α
αψ γZE , (8) 

where γZ  is the q-quartile of the standard Normal 

distribution of ( )1,0N , α  is the smoothing parameter, 

and 2σ  the sample variance. 

III.2 ARIMA M ODELS AND THE BOX & J ENKINS 

METHODOLOGY  

There are some classical approaches for modeling 
stationary time series. Models for stationary processes are 
the Autoregressive (AR), the Moving Average (MA) and 

the Autoregressive Moving Average (ARMA). Taking a 
time series { }tX , which is stationary and with 

nonseasonal patterns, if it follows an autoregressive 
process of order p , denoted by ( )pARXt ~ , then { }tX  

is given by 

tptpttt XXXcX εφφφ +++++= −−− Κ2211 , (9) 

where c , 1φ , 2φ , …, pφ  are unknown parameters, the 

iφ  being called autoregressive parameters, and tε  is a 

white noise process [10]. The term Moving Average 
comes from the fact that { }tX  is built from a weighted 

sum, similar to an average, of the most recent values of 
ε , and then it can be expressed as 

qtqtttX −− ++++= εθεθεµ Κ11 . (10) 

µ , 1θ , …, qθ  are unknown parameters, the iθ  being 

called moving average parameters, and tε  is a white 

noise. If tX  follows a moving average process of order 

q , it is denoted by )(~ qMAX t . It is possible to build 

models that pursue simultaneously autoregressive and 
moving average expressions. One example is a time series 
{ }tX  that follows an autoregressive process with moving 

average terms, denoted ),(~ qpARMAX t , given by 

qtqtptpt XcX −− +++= εθεφ , (11) 

where c , iφ  and iθ  are unknown parameters, the iφ  

being the autoregressive parameters and the iθ  being the 

moving average parameters. This is an autoregressive 
moving average process of order ( )qp, . 

It is possible that the traffic load presents some non-
stationary patterns, which induces the use of classical 
approaches for modeling them, such as the 
Autoregressive Integrated-Moving Average (ARIMA) 
and the Seasonal Autoregressive Integrated-Moving 
Average (SARIMA). Another approach is to use some 
kind of conversion in order to make it stationary. For 
example, one can take differences, logarithms or squared 
roots of the observations. A traditional procedure is to use 
a class of transformations called the Box-Cox 
transformation [10].  

Particularly, processes that, after the application of a 
finite number d  of differences, reduce to ARMA models 
are called ),,( qdpARIMA  models. The application of 

difference to the time series is a method to transform a 
non-stationary time series to a stationary one. An 

),,( qdpARIMA  model can be represented by 

qtqtpt
d

pt
d XX −− ++∆+=∆ εθεφµ , (12) 

where the iφ  are the autoregressive parameters, the iθ  

are the moving average parameters and d∆  indicates that 
the order of differentiation is d .  

Taking a close look at the equation 3 it is necessary to 
find a way to estimate the values of 

),,,,,,,,( 2121 qpc θθθφφφθ ΚΚ≡ , known as the vector of 

population parameters, on the basis of observations on 



Revista Científica Periódica - Telecomunicações                                                                                                                                                                       ISSN 1516-2338 
 

 
 

 Telecomunicações - Volume 07 - Número 01 - Julho de 2004 5 
 

{ }tX . A usual inference technique on which estimation 

could be based is Maximum Likelihood (ML). Given the 
sample of size T, the first step is to calculate the 
likelihood function (LF), ( )xL ;θ . This function can be 

found by calculating a probability density 
( )θ;,,,,,, 11TT1X1TXTX xxxf ΛΛ −−

 that is strong related to the 

assumption that the particular distribution for the white 
noise process tε  assumes a Gaussian white noise form, 

i.e., ( )2
t 0dNii σε ,..~ . So, the maximum likelihood 

estimate of θ  is the value for which this sample is most 
likely to have been observed, that is ( )xL ;maxarg θθ = , 

ℜ⊂Θ∈θ . It is a common sense to use the reduced and 
conditional log-likelihood ( ) ( )xLxl ;ln; θθ ∝ , where the 

LF has the form  

( ) ( ) ( ).;|;;
1

11|11 ∏
=

−−
=

T

t
ttTXTXX xxfxfxL θθθ   

For example, it is easy to show that the conditional        
log-likelihood function for a Gaussian ARIMA(p,0,q) 
process is 

( ) ( ) ( ) ∑−−−=
2

2
2

2
2log

2
2log

2
;

σ
εσπθ tTT

xl , (13) 

where qtqtptpttt xxcx −−−− −−−−−−−= εθεθφφε ΛΛ 1111 . 

An alternative solution for (5) could be performed by 

solving the system of equations given by ( ) 0=∇ θ
)

l , 

usually referred to as likelihood equations. In both cases, 
there is no closed-form or explicit solution and therefore 
numerical maximization must be used. The idea would be 
to make a number of distinct guesses for θ , and try to 

infer the value of θ
)

for which ( )xl ;θ  is largest. There are 

several algorithms for numerical maximization or 
optimization procedures. For instance, on could use Grid 
Search, Steepest Ascent, Newton-Raphson, Davidon-
Fletcher-Powell or Broyden-Fletcher-Goldfarb-Shanon 
(BFGS) methods. In this work, the BFGS algorithm was 
used. 

Needless to say that is indispensable a formal 
procedure to estimate the best model given a number of 
observations. This leads to a discussion of stochastic 
model building where Box & Jenkins methodology is 
widely used to discover models from the series, estimate 
their parameters and then evaluate the adequacy of the 
model’s fit to the experimental data. The Box & Jenkins 
methodology tries to provide a flexible procedure so that 
one may obtain high-quality and suitable models. The 
methodology consists of three basic stages: Identification, 
Parameter Estimation and Diagnostic Checking. We refer 
the reader to Harvey [11] for a more complete 
explanation related to the Box & Jenkins procedure. 

In the first stage, a tentative model is normally 
selected based on the sample autocorrelation function or 
the correlogram, which tries to identify the p and q orders 
for the ARIMA process. Given a time series, the first 
stage may recommend a number of specifications (i.e., p 
and q orders), each of which satisfies some diagnostics 
checks. For that reason, some kind of measure of 
goodness of fit is required to decide on the best models 

presented. There are a number of model selection criteria 
where the decision rule is to select the model that 
minimizes some variable. The Akaike Information 
Criterion (AIC) has the following form: 

( ) nxLAIC 2;log2 +−= θ , (14) 

where n is the number of parameters ( qpn += ). The ML 

estimation previously explained was performed during 
the second stage. 

In this work, we automate the B&J methodology in 
order to identify, estimate and perform the diagnostic 
check to the handoff load on every cell on a cellular 
network. We used a sample time interval of 30 or 60s and 
collected the first 30 samples (called the training period) 
before starting the automated B&J procedure. This 
quantity is a sufficient amount of samples to achieve 
convergence to the ML estimative. After the training 
period, for each new handoff load measured in each cell, 
during a chosen sample time interval, we performed the 
whole B&J procedure all over again. 

IV. T HE PROPOSED CAC 

Our novel CAC estimates the total amount of required 
bandwidth for future handoff calls using TL or ARIMA. 
The process for predicting the required bandwidth for 
handoff calls is local, that is, the base station uses only 
local information (collected bandwidth due to handoffs) 
that serves as the input for the prediction method without 
exchange of messages among neighboring cells to this 
end. Suppose that a base station knows the amount Ω of 
required resources for handoff calls at the current time t. 
The amount of resources required for handoffs )( ΩE  

at a future time tt ∆+  can be predicted based on the 
current Ω  and its predicted value from the previous time 
interval tt ∆− . 

The novel CAC should determine whether the 
admission cell has sufficient bandwidth to support the 
user requirements and takes into account the predicted 
handoff load for that cell. Let ψ  (the reserved 

bandwidth) be the upper confidence bound for the 
expected bandwidth due to handoff calls )(ΩE for the 

next prediction interval. The reserved bandwidth can also 
be the actual forecasted value from a chosen time series 
model. The following condition must be met: 

CBBi
N

i
≤++∑

=
ψ

1
 (15) 

This equation verifies whether the admission cell has 
sufficient bandwidth to support the new request. N is the 
number of existing connections, C is the wireless link 
capacity and Bi is the bandwidth being used by the ith 

connection in that cell. B is the bandwidth required by the 
newly requested connection. At the start of each interval, 
a new ψ  is used to control the admission decision. Upon 

each handoff arrival in a cell, during a prediction interval, 
the current ψ  is decreased by the MS’s bandwidth that 

has arrived until it reaches a null value or a new 
prediction interval is initiated. 
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V. PERFORMANCE ANALYSIS  

The simulated model consists of a cellular network 
with 19 hexagonal cells as depicted in Figure 2. In order 
to avoid the border effects, when a MS moves out the 
system this MS will be wrapped around to re-enter the 
system from the other side. Such a toroidal arrangement is 
an efficient way to approximately simulate very large 
systems [3], [5]. In this paper, the unit of bandwidth is 
called bandwidth unit (BU), which is assumed to be the 
required bandwidth to support a voice connection as in 
[2], [7]. Each cell is assumed to have a fixed link capacity 
of 100BUs. The traffic model used is similar to the one 
used in [2], [7]. Call requests are generated according to 
Poisson distribution with rate λ (call/cell/second) in each 
cell. The simulated traffic consists of users with 
bandwidth requirements of 1 BU (voice) and 4 BUs 
(video) with probabilities Rvo and 1-Rvo, respectively, 
where Rvo is also called the voice ratio as in [2]. In our 
simulations Rvo is set to 0.7, that is, 70% of voice traffic 
and 30% of video traffic. The lifetime of each call is 
exponentially distributed with mean 180s [4], [5], [7]. 

Upon each new call request or handoff call, the user 
chooses a moving direction among six probable target 
cells. At any time, while crossing a cell the MS can 
change its moving direction with probability equal to 
50%. If a MS changes its moving direction, a new target 
cell is randomly selected (uniformly distributed) as well 
as a new residence time is chosen. The time that a call 
spends in a cell prior to handoff to another cell (residence 
time) is exponentially distributed with mean 60s. 

V.1 SIMULATION RESULTS 

The metrics of interest in this paper are: (1) handoff 
dropping probability (HDP) defined as the ratio of the 
number of handoff calls dropped to the total number of 
handoff call attempts; (2) call blocking probability (CBP), 
that is, the ratio of the number of new calls blocked by the 
network to the number of new call requests; and  (3) 
bandwidth utilization. 

 

1

6

5

4

15

14

3

13

2

7

17

16

11

12

8

19 9

18 10

 
Figure 2. Simulated Cellular Topology. 

Unless otherwise stated, the models are labeled “M-B-
T” in graphs, where M represents the model adopted for 
prediction (TL or ARIMA), B is the reserved bandwidth 

type which may be based either on the predicted value 
(Pred) or on the upper confidence bound (CI) for that 
predicted value. T is prediction interval (30 or 60s). 

Figure 3 and Figure 4 depict the CBP and HDP 
comparison for the models using a prediction interval of 
30s. Both models achieved similar levels of CBP.  The 
HDP comparison shows that TL achieved a slightly 
greater HDP than ARIMA’s in higher loads. This 
scenario indicates that simplistic TL method can achieve 
satisfactory levels of prediction as compared to the 
ARIMA model.  
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Figure 3.  CBP - Prediction Interval: 30s; Reserved 
Bandwidth Type: Predicted Value. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 1 2
Load (call/cell/s)

H
D

P

ARIMA-Pred-30s
TL-Pred-30s

 

Figure 4.  HDP - Prediction Interval: 30s; Reserved 
Bandwidth Type: Predicted Value. 

In order to evaluate the proposal of using the upper 
confidence bound for the predicted value as the amount 
of bandwidth that should be reserved on each cell to 
guarantee a maximum target HDP during the cell 
overload, Figure 5 and Figure 6 show results considering 
the upper confidence bound for a 95% confidence level 
(CI). Hence, it is expected that the worst case HDP be 
inferior to 5%. As can be seen, the ARIMA’s HDP is 
better than TL’s. 

However, TL’s HDP was kept below the maximum 
target HDP of 5%. Moreover, the smallest HDP for 
ARIMA is achieved at the expense of a greater CBP, 
which generated more blockings of new calls than TL’s 
(Figure 5) and, consequently, providing bandwidth under-
utilization as it is depicted in Figure 7, where the 
bandwidth utilization for TL outperforms the one for 
ARIMA.  
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In order to verify our argument that the approach of 
using the upper confidence bound for the predicted load 
may cause overestimation for bandwidth reservations, 
Figure 8 and Figure 9 depict comparisons between the 
95% upper confidence bounds for the forecasted value 
and the actual handoff demand collected during the 
simulations for TL and ARIMA, respectively. These 
graphs were based on traces obtained from the same 
simulation as that of Figure 5 and Figure 6, considering 
only the load 1.7 (call/cell/second). They refer to 
bandwidth due to handoffs into the central cell (cell 1 
depicted by Figure 2) in our topology of 19 cells. It is 
easy to see that using the upper confidence bound of the 
predicted value ARIMA models may overestimate the 
bandwidth needs for reservations. Hence, it is important 
to take into account the tradeoff between the HDP and the 
bandwidth utilization.  
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Figure 5.  CBP - Prediction Interval: 30s; Reserved 
Bandwidth Type: Upper Confidence Bound Value 
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Figure 6. HDP - Prediction Interval: 30s; Reserved 
Bandwidth Type: Upper Confidence Bound Value. 

We believe that a more interesting prediction 
approach is to adopt an adequate prediction interval and 
the predicted value forecasted by the method (TL or 
ARIMA). By regulating the prediction interval (i. e., the 
time window adopted for making forecasts), it may be 
possible to achieve the desirable level of HDP without 
jeopardizing the bandwidth utilization.  

In order to check if a different prediction interval 
could provide a smaller and controlled HDP Figure 10 
and Figure 11 show the results for TL and ARIMA using 
different prediction intervals and the predicted value 

instead of the upper confidence bound for that value to 
reserve the wireless bandwidth. When the methods use 
60s as the prediction interval, both methods kept HDP 
below 5%. The ARIMA model achieves the smallest 
HDP in both scenarios (i.e., with 30 and 60s). Again, 
choosing the appropriate prediction interval is a tradeoff 
between the desirable HDP and bandwidth utilization. 
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Figure 7.  Utilization - Prediction Interval: 30s; Reserved 
Bandwidth Type: Upper Confidence Bound Value 

 

Figure 8.  Actual and upper confidence bound for the 
predicted handoff load (TL). 
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Figure 9.  Actual and upper confidence bound for the 
predicted handoff load (ARIMA).  

0

10

20

30

40

50

60

70

0 1000 2000 3000 4000 5000 6000

Time (s)

B
U

Actual Load

TL-CI



Revista Científica Periódica - Telecomunicações                                                                                                                                                                       ISSN 1516-2338 

 

 
 

8 Telecomunicações - Volume 07 - Número 01 - Julho de 2004  
 

In order to evaluate the impact of a residence time 
following a Pareto Probability Distribution Function 
(PDF), we only used the TL model. We analysed such 
consequences on the effective utilization, HDP and CBP 
metrics using different prediction intervals and also 
comparing residence times following an Exponential 
PDF. Figure 12 and Figure 13 show the HDP and CBP 
behaviour when varying the prediction intervals and the 
residence time PDF (e.g. Pareto and Exponential). One 
should notice that a Pareto residence time point out to less 
HDP. In such situation, there are a large number of 
handoff events (due to small residence times) since the 
Pareto is a heavy tailed PDF. Hence, this behaviour leads 
to more blocking of new calls. 
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Figure 10.  HDP- Prediction interval: 30s and 60s (TL). 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 0.5 1 1.5 2 2.5
Load (call/cell/s)

H
D

P

ARIMA-Pred-30s

ARIMA-Pred-60s

 

Figure 11.  HDP – Prediction interval:30 and 60s 
(ARIMA). 
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Figure 12.  HDP – Residence Time: Exponential vs. 
Pareto 

Although our methodology guarantees a maximum 
HDP by choosing a proper prediction interval, its 
optimum value depends on the traffic characteristics and 
also on the user’s mobility pattern. The choice of a preset 
value could lead to poor effective utilization since the  
predicted  load  to  be  reserved  in each cell is directly 
proportional to such prediction interval. So, in order to 
assist to the right selection of this interval, we suggest the 
deployment of an adaptive scheme, which uses the 
measured HDP value in each cell as the main selection 
criteria. We describe the algorithm below: 
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Figure 13. CBP – Residence Time - Exponential vs. 
Pareto 

Variable description 

• Max_HDP -> maximum value for the HDP. 
Beyond this threshold the algorithm must 
increase the prediction window. 

• Min_HDP -> minimum value for the HDP. Below 
this threshold the algorithm must increase the 
prediction window.   

• Max_Interval -> maximum value for the 
prediction interval. 

• Min_Interval -> minimum value for the 
prediction interval. 

Do (every prediction interval in each cell): 
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      If (Measured_HDP ≥ Max_HDP && 
Prediction_Interval < Max_Interval)  
              Increment Prediction_Interval; 
      If (Measured_HDP < Min_HDP && 
Prediction_Interval > Min_Interval) 
            Decrement Prediction_Interval; 

Figure 14 and Figure 15 present the HDP and 
bandwidth utilization results from the adaptive method 
when using a residence time following an Exponential 
distribution. The scheme’s parameters are described in 
Table 1. The adaptive scheme is compared to the fixed 
one considering the prediction intervals equal to 30s e 
60s. The value chosen for incrementing the interval 
prediction size is 5, on the other hand, the value for 
decrementing the interval prediction size is 1. These 
values were chosen in order to provide a fast recover 
during congestion periods as well as to avoid sudden 
dropping of handoffs while testing the adequate 
prediction interval.  
 

Max_HDP 5% 

Min_HDP 2% 

Max_Interval 60s 

Min_Interval 10s 

Initial Prediction 
Interval 

30s 

Table 1. Parameters of the Adaptive Scheme. 

Note that the adaptive scheme surpasses the fixed 
schemes in terms of bandwidth utilization (Figure 15) for 
lower loads. On the other hand, the adaptive scheme’s 
HDP obtained the highest values for the lower load 
scenarios, but kept the target HDP below 5% for higher 
loads as depicted in Figure 14. The HDP is also kept 
below the maximum permitted HDP for the fixed scheme 
that used 60s as the prediction interval, but its bandwidth 
utilization is similar to adaptive scheme’s utilization for 
higher loads. 
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Figure 14. HDP: Adaptive vs. Fixe. 
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Figure 15.  Utilization: Adaptive vs. Fixed. 

VI. CONCLUDING REMARKS  

In this paper, we propose a novel CAC scheme for 
wireless and mobile networks that avoids per-user 
reservation signaling. In order to predict the expected 
bandwidth of future handoffs we utilized two time series-
based methods: an adaptive exponential smoothing 
method, called Trigg and Leach (TL), which is effortless 
and does not impose computation overhead on the 
network elements and, the ARIMA-based method that 
requires a training period for model selection. In addition, 
TL method does not require a huge amount of saved data 
to perform forecasting, but ARIMA-based does. Our 
approach can also grant an upper bound on the handoff 
dropping probability even under higher loads based on 
the choice of an adequate prediction interval. We also 
have proposed and evaluated an adaptive algorithm to 
dynamically adjust the TL’s prediction interval in order to 
optimize the bandwidth utilization depending on the HDP 
objectives. 
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