
Development and Implementation of a Third Party

Call Parlay X API for Application Development in

NGN
Rodrigo Pimenta Carvalho & Antônio Marcos Alberti

Abstract—The search for technologies to develop value-added
services in Next Generation Networks created what is being called
Information and Communication Technologies convergence or
ICT. The success of such convergence will depend on, among
other factors, adequately opening NGN capacities to support
value-added applications development by IT community. Open
APIs such like OSA/Parlay and Parlay X are being considered
the “bridges”between both worlds. Despite such APIs, there are
other technologies and several possible paths involved in this task.
In this scenario, our paper firstly shows how next generation con-
verged networks and its functionalities can be exposed properly to
someone else, through Parlay X interfaces, implemented in Web-
Services-based application gateways. Therefore, this paper cames
to fulfil the lack of literature regarding methodology for value-
added applications development in NGN. Secondly, we developed
and implemented a Third Party Call Parlay X API inside a
Parlay X gateway emulator to demonstrate how useful a gateway
emulator could be in order to provide quick and correct design
and implementation of NGN applications. Finally, we discuss the
results obtained.

Index Terms—Service Creation, Value-Added Services, Web
Services, Parlay X and NGN

I. INTRODUCTION

The technological convergence toward an Internet Protocol

(IP) network is being considered a landmark without return.

Such convergence allows more flexibility, development speed,

money saving, services diversification, interactivity and net-

work access spray, besides a whole world of new opportunities.

Looking at this scenario, and concerned with the invoices

reduction, telecommunications companies have fomented new

technologies development, able to modernize their services

staffs and applications. One of the main proposals, according

to this, is the exposure of the telecommunications networks

services and capabilities through gateways implementing open

Application Programming Interfaces (APIs), such as: Par-

lay/OSA [1] and Parlay X [2].

The aim is that, through those APIs, a significant amount

of software developers will get together with the Telecom-

munication industry, bringing new and creative applications.

Currently, the experienced professionals in Information Tech-

nology, with the software development technologies, such as

Java [3], eXtensible Markup Language (XML) [4], JavaServer

Pages (JSP) [3], and Web Services [5] complete the new

Manuscrito recebido em 21 de setembro de 2010; aceito em 29 de dezembro
de 2010.

R. P. Carvalho (pimenta@inatel.br) and A. M. Alberti (alberti@inatel.br)
are with Instituto Nacional de Telecomunicações - Inatel. Av. João de
Camargo, 510 - Santa Rita do Sapucaı́ - MG - Brasil - 37540-000.

companies outsourced job’s environment, because they, them-

selves, bring knowledge, that are not in the Telecommunica-

tions professionals’ domain.

On the other hand, Information Technology (IT) profes-

sionals seeking entering the Telecommunications market, but

without having skills about the technologies from this market,

need the common interfaces, which make possible to request

telecommunications services. Therefore, the APIs that describe

the companies capabilities (and the domain about using them)

are the “bridges”between the IT and Telecommunications

worlds. It is the IT/Telecom or Information and Communi-

cation Technologies (ICT) convergence. We will discuss ICT

convergence on Subsection I-A, presenting how both worlds

could be integrated using application server gateways in a next

generation network scenario.

The motivation for this work arose when we became

interested in Next Generation Networks (NGNs)[6]. More

specifically, we were interested in developing Value-Added

Services (VAS)1 for standardized NGNs, such like Interna-

tional Telecommunication Union - Telecommunication Stan-

dardization Sector (ITU-T) Next Generation Networks Global

Standards Initiative (NGN-GSI) [7][8] and/or 3rd Generation

Partnership Project (3GPP) IMS [9]. At that time, the main

difficulty was to find out which path to follow, since there is

a great quantity of possible technologies involved in this task,

not only in IT world, but also in telecommunication world.

Therefore, we studied several candidate technologies for NGN

and IMS applications/services development in a 2007 [10].

In Subsection I-B we briefly presents such technologies in

the context of this work. This 2007 study pointed that it was

necessary a new investigation about how NGN functionalities

and resources could be exposed properly to IT domain. In

this paper, we present the path we follow to reach convergent

networks service stratum, i.e., to use standardized Parlay

X APIs, through Parlay X interfaces, implemented in Web-

Services-based application gateways. The paper aims to fulfil

the lack of literature regarding methodology for NGN value-

added services development.

With Parlay X APIs in mind, we started to choose a

service to implement. Of course, it must be a service that

could allow interesting applications development in IT world.

But also, we were interested in invocate such service using

NGN functionalities and resources at service stratum. To

1Examples of value-added services are instant messaging, on-line gaming,
push-to-talk, video push and pull, click-to-dial, presence, location, etc [26].

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 01, MAIO DE 201160



complete the requirements, we considered the fact that we

didn’t have a real NGN environment ready to test Parlay X

APIs applications. Gateway emulation appeared as an option

and we decided to implement Third Party Call (TPC) service

because it satisfied our requirements as well as it wasn’t yet

implemented in available emulators. Thus, we explored Parlay

X TPC API with gateway emulation, showing and discussing

the necessary technologies to their use, besides contributing

for the development of a gateway emulator from Ericsson

Company [11]. As we will see, gateway emulation proved

to be a very useful tool to merge IT and Telecom worlds,

allowing quick prototyping and testing, without the need of

using a full operational convergent network test-bed all the

time.

The remaining of the paper is divided as follows: Subsection

I-A discusses Information and Communication Technologies

Convergence, presenting how both worlds could be integrated

using application server gateways in a next generation network

scenario; Subsection I-B briefly presents the technologies

available to implement value-added services in NGN; Sub-

section I-C presents related works regarding Parlay X appli-

cation development for NGN and IPTV; Section II presents

development and implementation of a Third Party Call Parlay

X API on a gateway emulator. We discuss the methodology

used and obtained results; Finally, in Section III we draw some

conclusions and final remarks about the work.

A. Information and Communication Technologies Conver-

gence

Information and Telecommunications technologies are ex-

periencing significant changes motivated by Internet suc-

cess, new users behavior, technological convergence and new

paradigms, such as context awareness, usability, user-centric

design, networked electronic media, among others. In addition,

there is the importance of such technological platforms for

general companies, government and other institutions. Such

technologies had become a strategic part of their business.

Also, ICT convergence is playing a fundamental rule on

Future Internet design. Telecommunications operators need

this technical convergence to quickly create ingenious value-

added services no matter what the business model is being

used.

The financial question related to the maintenance of operator

revenues by means of innovative services, became so excellent

that agencies of standardizations, as ITU-T [8], 3GPP [12]

and European Telecommunications Standards Institute (ETSI)

[13], have defined standards for the architecture and services

support on NGNs. Evidently, such applications development

will depend on the facilities provided by telecommunications

network operators and how these facilities are exposed to

software developers. To facilitate the sprouting of these ap-

plications, a solution is to define standardized APIs to access

telecommunications capacities and services. For this, however,

a reorganization into networks infrastructure was necessary,

creating a separated layer for services invocation, conceptually

decoupled from transport network.

The current ITU-T convergent networks standardization

effort is called NGN-GSI [7], [8]. It focuses on the develop-

ment of detailed standards, necessary for NGNs development.

The generalized functional architecture proposed for NGN-

GSI separates service control and application/service support

functions from transport control and transport functions. The

functional separation on service and transport stratus allows

independent software designing, without concerning to low-

level details, like transport technologies, protocols, traffic

management, security and configuration. NGN-GSI transport

is based on IP protocol and includes sophisticated Quality of

Service (QoS) support.

NGN-GSI service stratus contains a set of Applica-

tion/Service Support Functions where several types of gate-

ways could be presented in order to expose NGN architecture

to Third Party Applications. More specifically, there is a

functional element called A-1: Application Server Functional

Entity (AS-FE) which supports Open Service Architecture

(OSA) application servers [14]. This element interacts with S-

1: Serving Call Session Control Functional Element (S-CSCF)

in order to invoke telecommunication services using Session

Initiation Protocol (SIP) [15] sessions. Therefore, when an

application needs some convergent network service it needs to

interact with one or more of these Application/Service Support

Functions. The frontier between Third Party Applications

and Application/Service Support Functions of NGN-GSI is

called Application-to-Network Interface (ANI). This interface

is defined by open APIs such as OSA/Parlay and Parlay X,

which will be discussed on the next subsection.

B. Application/Service Development Technologies for NGN

NGN success will depend, among other factors, on the

adequately opening of these networks capacities to support

value-added applications development. According to Glitho

[16], NGN key promise is just the ability to allow developing

innovative and lucrative software applications, quickly and

efficiently. Therefore, not only IT, but also telecommunication

players are interested on formulate the best architecture to

expose network capacities. Falcarin and Licciardi presented in

[31] a survey of advanced technologies for service creation

on NGN. Among the key technologies discussed there were:

Java APIs for Integrated Networks (JAIN), OSA/Parlay, Web

Services, Java and XML.

JAIN [17] is an initiative of the Java programming language

community to develop service creation APIs for NGNs. These

APIs bring service portability, network independence and open

development for telecommunications environment. JAIN inter-

faces allow to hide communication protocols from value-added

services. Thus, NGN services that expose such interfaces

could be invoked by virtually any third party application that

recognizes such interfaces, independent of available transport

network.

Parlay provides IT and Telecommunication technologies

integration through the definition of standardized APIs. Ac-

cording to [18], Parlay group, ETSI and 3GPP achieved

a consensus about the set of APIs that became known as

Parlay/OSA APIs. The set provides a high level view of

telecommunication service capabilities to application devel-

opers, specifically determining which service can be accessed

CARVALHO & ALBERTI: DEVELOPMENT AND IMPLEMENTATION OF A THIRD PARTY CALL PARLAY X API FOR APLICATION 61



and how. Therefore, an IT developer could become prepared to

work developing NGN application by studying such interface

declarations.

However, it is the NGN operator that decides which inter-

faces will became available to third party applications through

Parlay gateways. In fact, every Parlay API should be imple-

mented in gateways [19] before it can be used by applications.

Therefore, a Parlay gateway not only hides network stratus

from applications, but also avoids illegal access from some

malicious application. A Parlay gateway could interact with

SIP proxies (e.g. S-CSCF) in order to establish SIP sessions.

In this case, the Parlay gateway could interact with a JAIN-

SIP-API implementation.

Typically, IT domain applications and Parlay gateways will

be localized on different portions of the network. Therefore,

both entities should use some technology to exchange requests

and responses between their objects. An option to accomplish

with this is the Common Object Request Broker Architecture

(CORBA) technology [20].

A more contemporary possibility is to use Web Services

[5]. A Web Service is a software system that allows software

applications to interact directly over a network. Web Services

are typically published on the Internet, in such way that its

characteristics are declared and made accessible to interested

clients who can send remote requests to a Web Service. The

register of web services descriptions on the Internet is made

by means of a private Universal Description, Discovery and

Integration (UDDI) implementation [21]. A Web Service is

described by means of an interface similar to an OSA/Parlay

one, where the available methods as well as their return values

(or exceptions) are precisely described. As a consequence, a

Parlay gateway also can be available to remote clients as a

set of Web Services. A mapping between Unified Modeling

Language (UML) OSA/Parlay interfaces and an appropriated

Web Services description language called Web Services De-

scription Language (WSDL) is necessary. Web Service is

published on web servers, which contain WSDL files. Because

each application could use its own programming language and

operational system, the interaction between an application and

the Web Service is made using XML messages.

As defined in [21], WSDL specifies how to describe Web

Service in XML. Therefore, with WSDL, it is possible to map

one Web Service to XML. So, there is XML for two ob-

jectives: describing interfaces and exchanging messages. The

XML messages could obey the Simple Object Access Protocol

(SOAP) protocol standard [21], [22] for transportation. SOAP

messages (requests and responses) could be encapsulated on

Hypertext Transfer Protocol (HTTP) messages. However, it

is important to notice that SOAP messages can be encap-

sulated in any protocol and not necessarily in HTTP. When

encapsulated in HTTP messages, they are transported using

Transmission Control Protocol (TCP) over Internet Protocol

(IP), or TCP/IP.

The main obstacle of Web Services from a telecommu-

nication operator point of view is how to integrate them to

the telecommunication network. Firstly, the network could be

too much exposed to applications, generating hard resource

usage. Secondly, telecommunication operators must provide

QoS and availability for their clients. To deal with these

questions, OSA/Parlay specifications have been extended [23]

to provide two technologies: Parlay Web Services and Par-

lay X Web Services concerned to merge telecommunication

networks and Web Services. Also, these technologies could

increase the amount of developers that could take access to

telecommunication networks.

Parlay Web Services have WSDL files that mapped such

interfaces. Parlay X specifies how to expose telecommuni-

cation capabilities using Web Services in a simplified way.

While OSA/Parlay interfaces have been mapped to WSDL and

Java, Parlay X API was mapped only to WSDL, because this

API was created just to describe Web Services. According to

[24] and [25], Parlay X API is more simple than OSA/Parlay

API, virtually increasing the number of IT developers able to

create value-added applications. Also, in [2] it is mentioned

that Parlay X interfaces are more suited for the degree of

web developers familiarization in telecommunications. Yim

et. al. [24] also argued that with Parlay X it is possible

to develop applications with minimal understanding of the

telecommunications domain. Finally, Glitho [16] agrees that

OSA/Parlay API isn’t easy to be understood by readers without

previous knowledge on the details of the traditional telephony

networks. These reasons motivated us to focus in Parlay X,

instead of OSA/Parlay.

C. Parlay X Related Works

In March 2008, Sedlar et. al. [26] proposed Parlay X and

TPC, among other technologies, to build a new application in

a IP Television (IPTV) environment. The work considered an

IPTV user that is watching some advertisement on its terminal

(mobile or fixed) and decided to obtain more information.

Such application allows to establish a telephony call between

this terminal (or other user terminal) and a call center in the

enterprise which made the advertisement. Or, it allows the

telespector to call to some telephone without the need to dial

any number from another different terminal than its television

set.

What happens is that the proposed application interacts

with a Parlay X gateway and invokes a function on its TPC

interface, in such way that the gateway communicates with

the telecommunication operator to establish the call. This

gateway is implemented in Java and the application could send

requests using Web Services. According to Sedlar et. al. [26],

Web Services were choosen due to its implementation and

capability facilities. Our work also uses Web Services, Parlay

X and Java to establish TPCs in a NGN environment. However,

we are also concerned with the development methodology.

Both works use ThirdPartyCall Parlay X API. This

demonstrates the versatility of such technologies to create

value-added services in converged environments.

Also, Computer Supported Telecommunications Applica-

tions (CSTA) standards were used in [26] to provide a common

interface to access existing telephony systems infrastructure.

The authors argued that existent telephony interfaces are more

accessible than Parlay X APIs on today networks. Therefore,

Parlay X methods were translated by a Parlay X gateway to

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 01, MAIO DE 201162



Abstract Syntax Notation One (ASN.1) messages, which were

sent to CSTA enabled network elements.

In 2008, Nabil Ajam [27] proposed a new Parlay X Web

Service concerned to users privacy. To evaluate the solution,

an implementation was done in Java using a Sun Applica-

tion Server. The work uses a Parlay X gateway emulator

called Location Platform Emulator (LPE), where the new

Web Service was implemented. The implementation emulates

location services in a Parlay X gateway and contains a set of

distributed databases to store emulated terminals information,

such as terminal location. Our work also uses the same Sun

Application Server to support an Ericsson Parlay X gateway

emulator (see Subsection II-A). For our purposes it wasn’t

necessary to use a database.

II. THIRD PARTY CALL: DEVELOPMENT AND

IMPLEMENTATION

This section presents the service development methodology

we used to develop a TPC NGN application using standardized

Parlay X Telecommunications Web Services.

A. Development Environment Selection and Preparation

Since we have decided to use Parlay X APIs, we started

defining our development architecture. We considered a Java

application capable to request TPCs to a Parlay gateway, where

call requests could be invoked by means of SIP sessions 1.

So, we started looking for Parlay X application gateways.

However, at the time of the beginning of this work, we

didn’t find any mature open gateway available. Therefore, our

options were: to develop a Parlay X gateway or to use some

available Parlay X gateway emulator. Ericsson Telecom Web

Services Network Emulator [11] appeared as a good option

for our requirements, since we firstly were interest in testing

a new service from the application point of view. Thus, we

decided to use this gateway emulator instead of developing

our own gateway. In a second step (outside the scope of this

paper) a test with a real Parlay X gateway interconnected to

an NGN will be necessary. Remember that service/transport

separation was one of the first guidelines assumed in NGN

standardization.

Ericsson Telecom Web Services Network Emulator is an

open software system developed to be used in personal com-

puters. It was built using Java Enterprise Edition (EE) and it

is composed by an Web Services set running in a web server.

The emulator belongs to the Ericsson Mobility World program.

The 3.0 release was made available to developers on March

31, 2008 and it is the release used on this work.

The emulator contains a Graphical User Interface (GUI)

that could be used via browser and allows to create emulated

mobile terminals. Thus, for example, if an emulated terminal is

created with the number 34713309, the application interacting

with the emulator could send an Short Message Service (SMS)

message to this address and the emulator GUI could show

that such message was successfully received on the emulated

1The mapping of Parlay X implementation to SIP protocol is outside the
scope of this paper.

terminal. This allows IT developers to test if an application

is interacting successfully with a Parlay X gateway. The new

virtual terminals added to the emulator will work like real

ones, in a telecommunication network, but reachable through

this emulated gateway. Also, if a terminal was turned off and

a call is in progress, the emulator will return an exception.

Two web servers could be used with the emulator: Apache

Tomcat 6 or Sun Java System Application Server (SJSAS).

In both cases, administration console could be accessed via

web browser, showing which applications and Web Services

are active or not. SJSAS is a fully compliant implementation

of Java EE 5 platform [28] and was the option taken in this

work. SJSAS is now called Sun GlassFish Enterprise Server.

Figure 1 illustrates Ericsson service development architec-

ture [11]. An IT professional could work developing server and

client web software applications. The server web application

will receive HTTP requests from the client web application

and generate SOAP over HTTP requests sent over a TCP/IP

network. The server web application could be developed in

any platform [11]. The Java API for XML Web Services (JAS-

WS) servlet receives SOAP messages, removes XML code

and sends it to a ThirdPartyCallWsEndPoint class, as

it will be described on next section. The emulator changes

terminal appearance according to TPC interface implementa-

tion. The IT developer interacts with the emulated terminals

to emulate user behavior. Observe, that the emulator and the

web applications could be installed on different computers or

on the same computer. In the latter case, HTTP requests will

not pass by a real TCP/IP network. They will be handled by

computer’s operational system.

Besides the functions to emulate terminals and its status, the

emulator allows: 1) to set up the kind of exception must be

returned to the application and when they must be returned;

2) to return information about requested services; 3) to set

up geographical positioning information to emulated termi-

nals over a map. Release 3.0 supports four use cases: SMS

exchange, Multimedia Messaging Service (MMS) exchange,

terminal status information and terminal location. As we will

present on Section II-B, a new capacity was implemented to

allow TPCs emulation.

We installed software development tools based on Ericsson

document [11]. The only exception was the Eclipse tool, since

[11] suggests SUN NetBeans for Java coding.

B. Learning about TPC Parlay X Interface

Third Party Call is a kind of telephony call that allows

one entity to invoke a voice communication between two or

more participants. The great advantage of TPC support on

web based applications is the capability to establish voice

calls invoked by web browsers or other web applications.

The possibilities of third party call applications together with

web based applications are quite interesting. As an example

to sustain our affirmation, consider a person who is navigating

in an online auction and shopping web site and desires more

information about some product. Alternatively, instead of a

chat terminal, the web site could offer a button to talk with

some attendant. This application is being called click-to-talk.

CARVALHO & ALBERTI: DEVELOPMENT AND IMPLEMENTATION OF A THIRD PARTY CALL PARLAY X API FOR APLICATION 63



Fig. 1. Service development architecture with gateway emulator.

In this case, some web application could originate a TPC to put

in contact the customer and a company attendant, by means

of their respective telephone sets.

Obviously, this is just a simple example, but pertinent to

arise the understanding of how useful it could be to support

third party call requests in a telecommunications operator. We

decided to implement this new service on Ericsson emulator

since we are mainly focused on developing a methodology

for service development on NGNs. TPC interface is quite

simple when compared with other Parlay X interfaces, but

not less important. Therefore, it was a good starting point

for us, since it makes possible to work on Parlay X interface

implementation limited to a reasonable degree of complexity.

In this work, we followed the complete TPC specification

document referenced in [29]. We also used Ericsson document

[11]. The methods defined on [29] for ThirdParty Call

interface are:

• makeCall: Allows an application to request the es-

tablishment of a voice call between two terminals (or

parties).

• cancelCall: Allows an application to cancel a previ-

ous third party call request. It is ignored if both terminal

are already connected.

• getCallInformation: Allows an application to ob-

tain status information regarding a previous third party

call request. See II-E for more details about call status.

• endCall: Allows to finish an initiated or connected call.

C. Compiling WSDL Files

The WSDL files related to ThirdPartyCall service

have been obtained on Parlay web site as well as the respective

API. There are two files:
• parlayx_third_party_call_interface_2_3.wsdl

• parlayx_third_party_call_service_2_3.wsdl

The second one defines some abstract data

types used by ThirdPartyCall service, such

like: CallInformation, CallStatus and

CallTerminationCause.

To compile WSDL files and XML Schema (XSD) in order

to automatically generate the desired Java files, we used Java

Platform together with JAX-WS API. The tool wsimport was

used to map WSDL and XSD files into Java code. The

following XML script was necessary:

<property name="px_v2_1.tpc.wsdl"

value="parlayx_third_party_call_service_2_3.wsdl" /> <target

name="wsimport_tpc" description="Compiles the Third Part

Call Stubs">

<mkdir dir="${src.dir}"/>

<mkdir dir="${build.dir}"/>

<exec executable="${env.JAVA_HOME}/bin/wsimport">

<arg value="-s"/>

<arg value="${src.dir}"/>

<arg value="-d"/>

<arg value="${build.dir}"/>

<arg value="${wsdl.px_v2_1.dir}/${px_v2_1.tpc.wsdl}

"/>

</exec>

<echo message="Done"/>

</target>

This XML code was attributed to the build.xml file of

the emulator. Observe that this file makes reference to the

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 01, MAIO DE 201164



second file mentioned earlier. This second file also makes a

reference to the first one mentioned. Therefore, the three files

are considered by the wsimport tool.

After mapping these files, several Java entities (classes,

interfaces and data structures) were automatically created

and distributed into three Java packages. The Third

PartyCall.java file contains the Java interface code

for ThirdPartyCall service methods. The package

org.csapi.schema.parlayx.third_party_call

.v2_3 contains classes that define objects with attributes

values for ThirdPartyCall methods as well as the values

returned by these methods. For example, a MakeCall class

instance could be used to maintain parameters values to be

passed to makeCall method of the interface defined on

ThirdPartyCall.java file.

The files CallInformation.java, CallStatus

.java and CallTerminationCause.java from

org.csapi.schema.parlayx.third_party_call.v2_3

package define data structures to maintain information about

call status, call ending cause, etc. These structures, for

example, are the Java mapping of the XML content from

file parlayx_third_party _call_types_2_3.xsd.

More precisely, as an example, the contents of the file

Call Status.java is the Java mapping of the following

code from parlayx_third_party_call _types_2_3

.xsd:

<xsd:simpleType name="CallStatus">

<xsd:restriction base="xsd:string"

<xsd:enumeration value="CallInitial"/>

<xsd:enumeration value="CallConnected"/>

<xsd:enumeration value="CallTerminated"/>

</xsd:restriction>

</xsd:simpleType>

D. Parlay X Interfaces Implementation

The UML diagram of Figure 2 shows some

classes and interfaces that were created during the

implementation of the ThirdPartyCall interface.

The ThirdPartyCallWsEnd Point class is the final

responsible to define the algorithms of this interface methods

and it is defined on Third PartyCall.java file.

Therefore, in the emulator, this class determines how the

gateway will work (see Figure 1), according to [29]. Evidently,

this class doesn’t implement all the code necessary for the

new service, it relies on several other classes with useful

functions for the ThirdPartyCall service. An object (or

instance) of ThirdPartyCallWsEndPoint, as necessary,

uses an object of ThirdPartyCall ListenerImpl

class.

When the SJSAS web server runs, automatically the em-

ulator is instantiated, becomes available at a certain IP

address and starts to accept Web Services requests. The

first emulator class that runs is the InitServlet class

during emulator initialization. Such class is already present

in the emulator version 3.0. This class is responsible to

initiate other classes, which prepare the execution of the

ThirdPartyCallWsEndPoint class.

When the emulator receives a request, as for

example, “makeCall”, the make Call method

from ThirdPartyCallWsEndPoint runs. However,

this method needs an object that implements the

interface ThirdPartyCallEndPointListener

as shown on Figure 2. In fact, every time

ThirdPartyCallWsEndPoint object has one of its

methods invoked, a new instance of the object ThirdParty

CallListenerImpl is created. Therefore, a new instance

of this object will always be responsible to answer the

needs of an ThirdPartyCall WsEndPoint object.

The consequence is that a certain service request will

not interfere on other requests. Though, these objects

share some common structures, like a Java vector to maintain

information about answered requests. Figure 2 also shows that

ThirdPartyCallEndpointListener object is always

an instance of the ThirdPartyCallListenerImpl

class.

An object of WebServiceContext class is used by

ThirdPartyCallWsEndPoint object to provide access

to the object HttpServletRequest. This object is created

by the web server and contains address information about the

Web Service requester.

E. Including New Features on Emulated Terminals

In order to better design functionalities and states necessary

to implement ThirdParty Call service on emulated ter-

minals, we drew the state diagram shown on Figure 3. This

diagram doesn’t exist on Parlay X document[29]. We drew

it based on the defined states available on [29]. The states

represent all possible behaviors of the emulated terminals, ac-

cording to ThirdPartyCall Web Service requests and use

cases of an IT developer interacting with the emulator. In other

words, it represents the defined states when a requested call

between terminals X and Y, caller and called, is in progress.

Information about each of these states can be obtained through

the execution of the getCallInformation() method

from ThirdPartyCall Web Service.

With exception of the states Call_Initial and

Call_Connected all the other states change to the final

state after a certain time. This means that call status informa-

tion must be maintained during a certain time and after that be

removed as specified on [29]. We adjusted this time to 40 sec-

onds. In addition, Call_Initial state automatically goes

to Call_Terminated state if X or Y doesn’t answer the

call after 20 seconds. Those parameters are implementation-

dependant and [29] haven’t to fix such parameters. In this

paper, those parameters concern the emulator.

Although this diagram is a direct consequence of the rules

presented in [29], some details are not specified on such

document. For example, when one of the terminals already

connected decides to turn off (or the user hungs up), the other

terminal doesn’t return to a free state. It remains busy until

its button Hung Up receives a click on the terminal GUI.

We considered that the terminals are fixed. In this case, the

second terminal will be really free only after its user hung up.

Therefore, with this decision, telephone status could become

dependent of the user status. This consideration is important,

since a Parlay X gateway could in fact be used on fixed

CARVALHO & ALBERTI: DEVELOPMENT AND IMPLEMENTATION OF A THIRD PARTY CALL PARLAY X API FOR APLICATION 65



Fig. 2. UML diagram of some classes for TPC service.

terminal networks. Observe that this details are independent

from Parlay X and therefore the document [29] doesn’t define

terminal states.

Another consideration related to the final state is that if

a request is done to getCalInformation() method, so

the application that requested the information will receive the

following answer: “Response Error. Information

retention time out”. This occurs because the emulator

maintains status information during a predefined time. After

that, if an application tries to obtain call status information,

such application will receive a warning. In this case, the

timeout occurred 40 seconds after the finishing state was

achieved.

With the ThirdPartyCall interface implemented, the

emulated terminals became able to emulate the reception of a

telephony call, even ringing the phone bell, being also possible

to accept or to deny new calls.

Besides makeCall() method of ThirdPartyCall

interface, it has been added to the emulator the ability

to receive requests for other methods of this interface as

specified on [29]. For instance, after an accepted call re-

quest the application can ask for call information using the

getCallInformation().

To include the new terminal behavior on the

emulator it was necessary to edit and/or create the

files: terminalscripts.js, playNoSound.jsp,

playoldringsound .jsp, playringsound.js and

terminalstyle.css. Also, we handled some files of

parlay ws.emulator.web.ajax package.

The file terminalscripts.js contains a JavaScript

code which determines emulated terminals behavior. For ex-

ample, in this file, there is the code that controls the kind of

terminal information (SMS, MMS, call, etc) that is shown on

graphical interface depending on user interaction. There are

also controls to determine button types to be shown (Make a

Call, Hung Up or Accept Call). One of the modifications done

on this file was the inclusion of the following code:

function acceptCall(){

makeCall();

var terminal = document.getElementById(’terminalUri’).

value;

checkXmlHttpCALL = getXmlHttp();

checkXmlHttpCALL.onreadystatechange = doNothing;

checkXmlHttpCALL.open("GET",

"AjaxServlet?action=

DoAcceptCurrentCall&terminal="

+ terminal, true);

checkXmlHttpCALL.send(null);

playNoSound();

}

The code is run when the user does a click using

Accept Call button. The Asynchronous JavaScript and

XML (AJAX) [30] technology was used to allow the asyn-

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 01, MAIO DE 201166



Fig. 3. State diagram of a call request between emulated terminals.

chronous use of the DoAcceptCurrentCall class. There-

fore, the new methods presented on terminalscripts.js

use parlayxws.emulator.web.aj ax package. Figure

4 illustrates Java, AJAX, JSP and Javascript usage on terminal

emulation. The class DoAcceptCurrentCall for example

has the responsibility to set up some terminal information,

such as to configure busy status to the terminal, to turn off

ring status and maintain Call Connect information together

with the call information, if it is the case.

The parlayxws.emulator.web.ajax packet classes

are action classes designated to take control of terminal behav-

ior, which objects receive requests directly by JavaScript and

CARVALHO & ALBERTI: DEVELOPMENT AND IMPLEMENTATION OF A THIRD PARTY CALL PARLAY X API FOR APLICATION 67



can interact with other emulator objects. These classes serve

AJAX request sent by JavaScript, and even their algorithm are

complex, this doesn’t affect emulated terminals GUI. The other

files of the parlayxws.emulator.web.ajax package

take care of other emulated terminals behaviors.

Some methods of the terminalscripts.js script use

the files playNoSound .jsp, playoldringsound.jsp

and playringsound.jsp. These files written in JSP are

responsible to make the sounds when a terminal is ringing.

These files were created during our work.

F. Editing XML Files

After finishing the implementation of the source code

needed to reflect the new emulator functionalities re-

garding TPC, it was necessary to edit the build.xml,

sun-jaxws.xml and web.xml files to reflect such

changes.

The sun-jaxws.xml and web.xml files contain the

necessary descriptions to run a web application. For example,

these files are used to expose each emulator Web Service. To

expose means to declare which are the classes that implement

service interfaces, in such way that, whether the web server

receives a request directed to a service defined on interface

Z, a method in the object of the class that implements Z will

be invoked. This invocation will be provided by some other

object running in the web server, possibly defined by an API

such as JAX-WS.

In the file sun-jaxws.xml it was added the following

code:

<endpoint implementation="parlayxws.emulator.

ws.px_spec_v2_1.tpc.ThirdPartyCallWsEndpoint"

name="ThirdPartyCall" url-pattern="/ParlayXTpcAccess/

services/ThirdPartyCall" />

This XML code exposes the

ThirdPartyCallWsEndpoint class, which represents

the ThirdPartyCall Web Service. The object of such

class is the end point for an application request. After that,

the request is finally treated by the emulator as shown on

Figure 1. This explains the EndPoint string in the class name.

We concerned with the coding of this class, but not with

other classes responsible to interpret SOAP messages, since

this task is a JAX-WS responsibility. This is the case of the

WSServlet class. However, it must exist a mapping among

this class and all the Web Services available on the emulator.

In other words, a mapping must indicate that the

WSServlet object will use an object to represent the end

point where a received request must be delivered. This object

could be a ThirdPartyCallWsEndpoint in the case

of the TPC service or any other EndPoint object for other

services. For example, if the emulator receives a request about

the status of some terminal, this request will be delivered to

the TerminalStatusWsEndpoint class already coded by

Ericsson.

The following sequence of XML code shows the contents

from the web.xml file illustrating previous discussion.

1) To indicate which is the JAX-WS class that constitutes

a WSServlet it was necessary the code:

<servlet>

<display-name>WSServlet</display-name>

<servlet-name>WSServlet</servlet-name>

<servlet-class>

com.sun.xml.ws.transport.http.servlet.WSServlet

</servlet-class>

</servlet>

2) If the web server received a HTTP request which

Uniform Resource Locator (URL) contains the

ThirdPartyCallService name, then the

WSServlet class will process such request. This

was indicated using the following code:

<servlet>

<servlet-name>ThirdPartyCallService</servlet-name>

<servlet-class>

com.sun.xml.ws.transport.http.servlet.WSServlet

</servlet-class>

<load-on-startup>1</load-on-startup>

</servlet>

3) To indicate that a WSServlet class object is mapped

to a ThirdPartyCallWsEndpoint class object the

following code was necessary:

<servlet-mapping>

<servlet-name>WSServlet</servlet-name>

<url-pattern>/ParlayXTpcAccess/services/*
</url-pattern>

</servlet-mapping>

4) The following code was needed to indicate that a

URL containing “/ThirdPartyCall Service”was

mapped to a servlet with name ThirdPartyCall

Service, therefore validating the mapping defined into

(2).

<servlet-mapping>

<servlet-name>ThirdPartyCallService</servlet-name>

<url-pattern>/ThirdPartyCallService</url-pattern>

</servlet-mapping>

In summary, when a request, whose URL contains

“/ThirdPartyCallService”, arrives at the web

server, by the definition done on (4) the server must

use the servlet named ThirdPartyCallService.

By definition (2), this implies on the usage of the

com.sun.xml.ws.transport.http.servlet.WSSe

rvlet class. This class is referred by the WSServlet

according to (1). Also, by definition (3), this last servlet is

mapped to any service defined on web server. Finally, by the

definition done on sun-jaxws.xml file, the right class to

run the demanded service is found.

Regarding build.xml file, just one more XML instruction

was needed to allow that the files created on this work could

be compiled together with the automatically Java generated

files, JSP and .js files. The following line code shows this

modification:

<property name="thdPtCall.package.name" value=

"parlayx.tpc"/>

G. Testing with Gateway Emulation

For testing purposes, we used a desktop computer to install

the gateway emulator. Using SJSAS interface, an IT developer

could see which are the Parlay X interfaces running on the

web server. Also, SJSAS web server builds a web page with

a form where it is possible to directly send service requests to

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 01, MAIO DE 201168



Fig. 4. Java, Javascript, JSP and AJAX technologies usage on terminal emulation.

the gateway emulator. Therefore, we used this web page to test

TPC interface, instead of developing the server and client web

application shown on Figure 1. The main reason why is that

the gateway emulator is unable to determine if a TPC request

is sent by an external server web application or by a SJSAS

web form. The emulator reacts exactly on the same way.

Also, SJSAS sends SOAP messages as a server web ap-

plication would do. SJSAS uses WSDL files to build the

aforementioned test web pages. Tough, it was possible to use

different computers in a more realistic scenario, we chose

this approach because we were interested on start the tests as

quickly as possible, as well as maintaining the development

environment portable and realistic enough to validate our TPC

implementation and methodology.

Figure 5 illustrates our test procedure during a third party

call between two emulated terminals (X and Y). Also, it

reproduces obtained emulated terminals GUIs. The sequence

was:

1) An IT developer using the emulator GUI (web pages)

creates two emulated terminals.

2) Also using the emulator GUI, he/she requests the es-

tablishment of a call between emulated terminals. This

request is handled by SJSAS and delivered to gateway

emulator. If a client web application was used, the TPC

request “click”could be sent by HTTP to the server

web application, which would generate an appropriated

SOAP message for the SJSAS server to reach gateway

emulator.

3) The emulator receives the request and using its objects,

it allocates a Request ID and stores call request infor-

mation, such as terminal addresses. The emulator sends

a response containing the allocated Request ID.

4) Emulated terminals query periodically data on emulator

and discover about a call request. Terminal X will ring,

while terminal Y will remain waiting. Remember that

in a TPC both telephones will ring.

5) When a terminal rings, its GUI looks a little bit different,

now with a new yellow button called Accept Call. Figure

5 shows the emulated terminal X GUI at this moment.

Such yellow button was a new feature added to the

emulator.

6) The IT developer effectuates a click, which emulates

that the call was accepted by the final user interested

in more information about a certain product. Again, the

terminal X GUI reflects the change, showing that a call

is in progress.

7) In the sequence, the emulator registers the information

that it is inquiring terminal Y to ring. As happened to

terminal X, terminal Y discovers this fact and rings. See

Figure 5.

8) The user on terminal Y decides to accept or decline the

call. If the call is accepted, both terminals change their

graphical interfaces to reflect that a call is up.

When Accept Call button receives a click, the terminal

stops ringing immediately and its status is changed to busy.

Here is an example of a SOAP message sent by SJSAS web

page form to the emulator, where the caller has the address

34713309 and the called 38312275:

<?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="http://www.csapi.org/schema/parlayx/

third_party_call/v2_3/local"

xmlns:ns2="http://www.csapi.org/schema/parlayx/common/v2_1">

<soapenv:Body>

<ns1:makeCall>

<ns1:callingParty>tel:34713309</ns1:callingParty>

<ns1:calledParty>tel:38312275</ns1:calledParty>

</ns1:makeCall>

</soapenv:Body>

</soapenv:Envelope>

After an accepted call request the developer could ask

for call information using the getCallInformation()

method as follows:

1) First, the IT developer using SJSAS could send a SOAP

CARVALHO & ALBERTI: DEVELOPMENT AND IMPLEMENTATION OF A THIRD PARTY CALL PARLAY X API FOR APLICATION 69



Fig. 5. Testing the service emulation architecture.

message requesting call information:

<?xml version="1.0" encoding="UTF-8"?> <soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="http://www.csapi.org/schema/parlayx/third_

party_call/v2_3/local"

xmlns:ns2="http://www.csapi.org/schema/parlayx/common/

v2_1">

<soapenv:Body>

<ns1:getCallInformation>

<ns1:callIdentifier>0</ns1:callIdentifier>

</ns1:getCallInformation>

</soapenv:Body>

</soapenv:Envelope>

In this example the call identifier 0 is passed as

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 01, MAIO DE 201170



a getCallInformation () method parameter to

identify the desired call. The IT developer knows

this identifier since it was received as a return of

makeCall() method.

2) This SOAP message is interpreted by JAX-WS (or

other equivalent) tool available on the web server.

Thus, the getCallInformation() method of the

ThirdPartyCall WsEndPoint object is invoked.

3) The emulator searches the desired information related

to the makeCall(X, Y) and returns the current status

inside of a CallInformation object instance. This

object contains a CallStatus object instance with the

status information in the format of a string.

4) The returned CallInformation object is interpreted

by other Java objects at web server, available on JAX-

WS and capable to formulate a SOAP answer. Thus the

emulator answers with the following SOAP message:

<?xml version="1.0" encoding="UTF-8"?> <soapenv:

Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/

envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:ns1="http://www.csapi.org/schema/parlayx/

third_party_call/v2_3/local"

xmlns:ns2="http://www.csapi.org/schema/parlayx/

common/v2_1">

<soapenv:Body>

<ns1:getCallInformationResponse>

<ns1:result>

<callStatus>CallConnected</callStatus>

</ns1:result>

</ns1:getCallInformationResponse>

</soapenv:Body>

</soapenv:Envelope>

5) The requester interprets SOAP message and obtains the

current call status, which is CallConnected in this

case.

III. CONCLUSION

This paper explored how open APIs could be used to

expose telecommunications network resources for IT develop-

ers in order to accelerate value-added services development.

Specifically, it presented the role of OSA/Parlay or Parlay X

gateways to invoke telecommunications services by means of

SIP proxies, such as S-CSCF in NGN-GSI or IMS networks.

Possible key technologies for this task were presented consid-

ering simplicity and IT developers familiarization. It looks to

be a consensus that Parlay X API is more simple than OSA/

Parlay API, virtually increasing the number of IT developers

able to create value-added applications. Because Parlay X uses

Web Services to implement service interfaces, it was necessary

to deal with WSDL, SOAP, XML and other web services

related technologies and tools. The work contextualized where

each of these technologies were employed and in which order.

Also, it contributed presenting the right moment to use each

one as well as on how to fit the resulting deliverables of

each technology in order to compose a final service software.

Obtained task sequence was organized in a methodology that

could be used in other similar works.

The methodology used starts with development environment

selection and preparation. It was based on a gateway emula-

tion architecture, keeping development environment simple,

portable and isolated from telecommunications world. We

contend that this strategy is interesting in a first moment, since

it maintains telecommunications complexity hidden from IT

developers. The second step in methodology is to learn about

desired Parlay X interface and methods. As a use case, we

focused on TPC interface. The compilation of needed Java

entities from WSDL files was the third step. The fourth step

was to implement desired Parlay X interface methods in the

emulator using Java and the fifth step was to include the

new features in emulated terminals. In the sequence, it was

necessary to edit XML files to reflect the changes on emulated

terminals. Finally, we successfully tested TPC service.

We concluded that Parlay X Web Services promoted a

simplified, organized and exciting way to use exposed telecom-

munications capabilities, very different from a direct SIP

approach, and that isn’t necessary to have a real gateway to

test applications. Gateway emulation proved to be an inter-

esting approach, in such way that, from a web service client

application point of view, the needed work to access some

NGN resource is purely computational. The work is still more

reduced if a desired Parlay X interface is already implemented

on gateway emulator. In this case, the IT developer must

concern only about its own application.

We intend to expand this work to other Parlay X interfaces

(e.g. Payment and Presence), contributing to increase used

gateway emulation capabilities. The proposed methodology

proved to be general enough for this. Another future work is

to compare standalone Parlay X performance with standalone

or combined OSA/Parlay, SIP or CSTA technologies. The

objective is to determine the effect of functional overlapping

in service performance. If a certain value-added service needs

more than one of these technologies, what is the impact on

performance?

ACKNOWLEDGMENTS

We would like to thank Erik Eriksson and Ericsson, by the

help regarding Parlay X Gateway Emulator. Also, we would

like to thanks Inatel by the support.

REFERÊNCIAS

[1] The Parlay Group. http://www.parlay.org.
[2] The Parlay Group, Parlay Web Services Working Group, Parlay Web

Services: Application Deployment Infrastructure, Oct. 2002.
[3] SUN, Java Programming Language. http://java.sun.com.
[4] WWW Consortion, XML. http://www.w3.org/XML/.
[5] WWW Consortion, Web Services Architecture.

http://www.w3.org/TR/ws-arch.
[6] ITU-T, General Overview of NGN, Recommendation Y.2001, 2004.
[7] Carugi, M., Hirschman, B., & Narita, A., Introduction to the ITU-T NGN

Focus Group Release 1: Target Environment, Services, and Capabilities,
IEEE Commun. Mag., vol. 43, no. 10, Oct. 2005.

[8] ITU-T, Next Generation Networks Global Standards Initiative.
http://www.itu.int/ITU-T/ngn/.

[9] 3GPP, Technical Specification Group Services and System Aspects, TS
23.228: IP Multimedia Subsystem (IMS).

[10] Carvalho, R. P., Alberti, A. M.. Java Technologies for NGN Service
Creation: Discussion and an Architecture to Improve SIP Addresses Dis-
covery, The IASTED European Conference on Internet and Multimedia
Systems and Applications, Chamonix, 2007.

CARVALHO & ALBERTI: DEVELOPMENT AND IMPLEMENTATION OF A THIRD PARTY CALL PARLAY X API FOR APLICATION 71



[11] Ericsson, Telecom Web Services Network Emulator: Developer’s Guide,
Ericsson, Mar. 2008.

[12] 3GPP, IP-Multimedia Subsystem. http://www.3gpp.org/article/ims.
[13] ETSI, Next Generation Network.

http://www.etsi.org/website/Technologies/NextGenerationNetworks.aspx.
[14] ITU-T, Functional requirements and architecture of the NGN release 1,

Recommendation Y.2012, 2006.
[15] IETF, SIP: Session Initiation Protocol, RFC 2543.

http://tools.ietf.org/html/rfc2543.
[16] Glitho, R. H., Developing Applications for Internet Telephony: A Case

Study on the Use of Parlay Call Control APIs in SIP Networks, IEEE
Network, Montreal, Canada, vol. 18, June 2004, 48-55. ISSN: 0890-
8044.

[17] SUN Microsystems, JAIN and Java in Communications, White Paper,
Santa Clara, California, March 2004.

[18] Gupta, M., Parlay/OSA Mature for the Telecoms Market, Eurescom
Workshop ’OSA and Parlay @ Work’, Heidelberg, Nov. 2002.

[19] Venters, T., Open Standard Initiatives For Service Delivery Platforms,
TMCnet, Mar. 2004.

[20] Leclerc, M., Network Resource Gateway: Benefits and Business Op-
portunities of Building Wireless Applications Using Parlay/OSA for
Developers, Ericsson, Montreal, Canada, Dec. 2003, Part 3: Developing
Parlay/OSA Applications.

[21] Cerami, E., Web Services Essentials: Distributed Applications with
XML-RPC, SOAP, UDDI and WSDL, O’Reilly, Fev. 2002. ISBN: 0-
596-00224-6.

[22] WWW Consortion, SOAP. http://www.w3.org/TR/soap.
[23] The Parlay Group, Parlay and Next-Generation Networks, White Paper,

May 2005.
[24] Yim, J., Choi, Y., & Lee, B., Third Party Call Control in IMS using

Parlay Web Service Gateway, IEEE Conference in Advanced Commu-
nication Technology, Fev. 2006, 221-224, ISBN 89-5519-129-4.

[25] Wegscheider, F., Bessler, S., & Gruber, G., Interworking of Presence
Protocols and Service Interfaces, IEEE International Conference on
Wireless and Mobile Computing, Networking and Communications, p.
45-52, Aug. 2005.

[26] Sedlar, U., Zebec, L., Bester, J., & Kos, A., Bringing Click-to-Dial
Functionality to IPTV Users, IEEE Communications Magazine, Toronto,
Canada, vol. 46, p. 118-125, Mar. 2008. ISSN: 0163-6804.

[27] Ajam, N., Privacy Based Access to Parlay X Location Services, Fourth
International Conference on Networking and Services, Mar. 2008.
Gosier, p. 204-210, ISBN: 978-0-7695-3094-9.

[28] Jendrock E., Ball J., Carson D., Evans, I., Fordin S., Haase, K., “Java EE
5 Tutorial”, Prentice Hall, 3rd edition, Nov. 2006, ISBN 03-2149-029-0.

[29] ETSI, The Parlay Group, Open Service Access (OSA): Parlay X Web
Services, ETSI standard: ETSI ES 202 391-2, v. 1.2.1, Part 2: Third
Party Call, France, Dec. 2006.

[30] Paulson, L. D., Building Rich Web Applications with Ajax, IEEE
Computer Magazine, Oct. 2005. Volume: 38, Issue: 10. 14-17. ISSN:
0018-9162.

[31] Falcarin, P., & Licciardi, C. A., Technologies and Guidelines for Service
Creation in NGN, exp magazine, vol. 3, n. 4, p. 46-53, Dec. 2003.

Rodrigo Pimenta Carvalho received the degree
in Computer Science from Minas Gerais Federal
University (UFMG), Belo Horizonte, MG, Brazil, in
1997, and the M.Sc. degree in Electrical Engineer-
ing from Instituto Nacional de Telecomunicações
(INATEL), Santa Rita do Sapucaı́, MG, Brazil, in
2008. In July 1997 he joined the INATEL, as a
Software Developer. He has experienced software
development across 13 years, including projects for
companies like IBM, NEC, LG, Nokia, Ericsson
and Benchmark. He is a member of the INATEL

Competence Center, daily working with technologies like programming lan-
guages, Object Oriented Programming and Telecommunication protocols. In
2002 he received the Best Business Plan Award from Inatel Entrepreneurship
Core (NEMP). In 2004 he became a Sun Certified Programmer for the
Java 2 Platform 1.4. Nowadays his main working area is Telecommunication
software design and development, where he has expertise in project, modeling,
codifying, and tests. His current interests include application development in
Next Generation Networks, adopting industry standards tools such as Java,
stack NIST-SIP, Web Services and Parlay X. He is also a co-founder of the
enterprise Biosoftware Sistemas Didáticos Ltd.

Antonio Marcos Alberti received the degree in
Electrical Engineering from Santa Maria Federal
University (UFSM), Santa Maria, RS, Brazil, in
1986, and the M.Sc. and Ph.D. degrees in Elec-
trical Engineering from Campinas State University
(Unicamp), Campinas, SP, Brazil, in 1998 and 2003,
respectively. In February 2004 he joined the Instituto
Nacional de Telecomunicações (INATEL), as an
Adjunct Professor. He has experience in teaching
more than 8 post-graduation disciplines, including
Analysis and Performance Evaluation of Commu-

nication Networks, Optimization Methods Applied to Telecommunications
and Convergent Networks. He is a member of the editorial board of the
INATEL telecommunications magazine. He was member of the technical
committee of Globecom, TEMU, ICDT and ANSS conferences. In 2010,
wrote a book chapter entitled ”Future Network Architectures: Technological
Challenges and Trends”that discusses technological requirements, challenges
and trends towards future network architectures. His main working area is
communication networks, where he has expertise in project, modeling, simu-
lation, performance evaluation and optimization of such networks. His current
interests include future networks design, cognitive and autonomic networks,
indirection resolution, entities identification, virtualization and future enabling
technologies.

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 01, MAIO DE 201172


