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Abstract— We propose a symbol-based decision algorithm for
blind equalization of quadrature amplitude modulation signals.
It jointly update the feedforward and feedback filters of a
decision feedback equalizer and performs similarly to a super-
vised adaptive algorithm, such as the normalized least mean-
squares algorithm. Besides presenting strategies to speed up its
convergence, we provide sufficient conditions for its stability. Its
good behavior is illustrated through simulation results.

Index Terms— Adaptive filters, blind equalization, constant
modulus algorithm, decision-directed algorithm, decision feed-
back equalizer, quadrature amplitude modulation.

I. INTRODUCTION

Modern communication systems must deliver high amounts

of data within short time intervals, pursuing low symbol

error rates (SER), and also considering different environment

conditions. To accomplish such objective, many modulation

schemes were proposed in the literature, as is the case of high-

order quadrature amplitude modulation (QAM), which uses the

available bandwidth in an efficient manner [1], [2], [3]. The

performance of a communication system that employs high-

order QAM signals strongly depends on the signal-to-ratio

(SNR), as we can observe in Fig. 1. This figure shows SER

curves as a function of SNR for an additive white Gaussian

noise (AWGN) channel and assuming different QAM orders.

To achieve acceptable symbol error rates, the higher the QAM

order is, the higher the signal-to-noise ratio must be.

In practical situations, the channel is noisy and dispersive,

which demands an efficient equalizer to mitigate the effect

of intersymbol interference, mainly when high-order QAM

signals are used in single carrier systems. Optimum equalizers

are usually developed from the perspective of known channel

characteristics and have high computational cost, as is the

case of the maximum likelihood sequence estimation (MLSE)

method [4]. On the other hand, solutions based on the linear

transversal equalizer (LTE) are relatively simple, but perform

poorly in difficult environments such as channels with long and

sparse impulse response, non-minimum phase, spectral nulls

or nonlinearities [5], [6], [7], [8].

In this context, decision feedback equalizers (DFEs) present

a favorable tradeoff between computational cost and efficient

behavior, independently of the channel type. Besides employ-

ing QAM, the use of bandwidth can be improved if DFEs are
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Fig. 1. Logarithm of SER as function of SNR (dB) for 16, 64, 256, 1024
and 4096-QAM, and assuming an AWGN channel.

blindly adapted. When the feedforward and feedback filters of

a DFE are jointly adapted by blind algorithms, as is the case of

algorithms based on the constant-modulus cost function [9],

certain actions must be taken. This is due to the fact that

constant-modulus-based algorithms may converge to so-called

degenerative solutions, which occur when the signal at the

equalizer output is independent of its input. This problem was

addressed in [6], where modifications in the constant modulus

criterion were proposed to avoid such undesired solutions,

leading to a stochastic algorithm named DFE-CMA-FB (con-

stant modulus algorithm for adaptation of DFE with constraint

in the feedback filter). Although DFE-CMA-FB avoids de-

generative solutions, it still presents some inherent drawbacks

of constant-modulus-based algorithms as the impossibility of

solving phase ambiguities introduced by the channel and a

relatively large misadjustment when used to recover noncon-

stant modulus signals, as is the case of high-order QAM

signals (see, e.g., [10] and its references). The phase rotation

can be avoided by using, for example, the phase tracking

algorithm as in [6] or the philosophy of the multimodulus

algorithm (MMA), which minimizes the dispersion of the

real and imaginary parts of the equalizer output separately

[11], [12]. The MMA approach does not reduce significantly

the misadjustment of DFE-CMA-FB since its updating error

is zero only when the equalizer output is zero or when

its magnitude is equal to the square root of the dispersion

constant.

To reduce the misadjustment of DFE-CMA-FB, [13] and
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Fig. 2. Relations among blind algorithms for equalization of QAM signals.

[14] proposed to operate it concurrently with the soft decision-

directed algorithm (SDD) [15] for equalization of QAM

signals. The resulting concurrent algorithm, denoted NDEG-

SDD-CMA (Non-Degenerative SDD-CMA), presents an im-

provement in equalization performance over DFE-CMA-FB at

the cost of a moderate increase in computational complexity.

To the best of our knowledge, the first concurrent algorithm

for blind equalization of QAM signals was proposed in [16]

and later improved in [17], both for the adaptation of linear

transversal equalizers. In [14], the algorithm of [17] was

extended to the blind adaptation of DFEs, taking into account

the criterion of [6] in order to avoid degenerative solutions.

In this paper, inspired by the NDEG-SDD-CMA character-

istics and using the MMA approach, we introduce the symbol-

based decision (SBD) algorithm, which can be interpreted as

an extension of the decision-directed algorithm (DD) for blind

equalization of QAM signals. In a similar manner, it avoids

degenerative solutions if the criterion of [6] is adopted. For

sake of comparison, we also consider the MMA approach

for NDEG-SDD-CMA, which is referred hereinafter to as the

concurrent soft-decision (CSD) algorithm. A summary of the

relations among the algorithms is shown in Fig. 2, where

the dashed lines indicate that an algorithm was used as an

inspiration source.

The paper is organized as follows. In Section II, we present

the problem formulation. Then, we explore different error

functions and propose the SBD algorithm in Section III. In

Section IV, we discuss the convergence and stability of the

proposed algorithm. Finally, in sections V and VI, we present

the simulations and conclusions, respectively.

II. PROBLEM FORMULATION

We assume a fractionally decision feedback equalizer (T/2-

DFE) as shown in Fig. 3, due to its inherent advantages (see,

e.g., [18], [19], [6] and their references). The independent and

identically distributed (i.i.d.) and non-Gaussian signal a(n)
is transmitted through an unknown communication channel,

modeled by the impulse response vectors

he = [h0 h2 · · · h2N−2 ]
T

and

ho = [h1 h3 · · · h2N−1 ]
T ,

and additive white Gaussian noise (AWGN), denoted as ηe(n)
and ηo(n). The superscript T stands for transposition and

h0, h1, · · · , h2N−1 are samples of a continuous-time channel

model, sampled with twice the symbol rate. The signals xe(n)
and xo(n) are distorted versions of the transmitted signal,

due to the effects of the intersymbol interference and of the

additive white Gaussian noise. These signals are filtered by

finite impulse response (FIR) filters (wfe and wfo), each one

with Mf/2 coefficients, forming the oversampled feedforward

filter, whose output is denoted as yf(n). The past decisions

are fed back and filtered by a baud-rate FIR feedback filter

wb with Mb coefficients, resulting in the output signal yb(n).
The sum of the filters’ outputs, i.e., y(n) = yf(n) + yb(n),
enters to the decision device.

Defining the input regressor vectors as

x(n) = [xT

e (n) x
T

o (n) ]
T (1)

â∆(n) = [â(n−∆− 1) · · · â(n−∆−Mb)]
T , (2)

where

xe(n) = [xe(n) xe(n− 1) · · · xe(n−Mf/2 + 1)]T , (3)

and

xo(n) = [xo(n) xo(n− 1) · · · xo(n−Mf/2 + 1)]T , (4)

the outputs of the feedforward and feedback filters can be

computed respectively as

yf(n) = xT (n)wf(n− 1) (5)

and

yb(n) = âT

∆(n)wb(n− 1), (6)

being wf(n) the coefficient vector of the feedforward filter,

formed by the concatenation of the coefficient vectors wfe(n)
and wfo(n).
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Using known statistics of the transmitted signal, the blind

DFE must mitigate the channel effects and recover the signal

a(n) for some delay ∆.
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Fig. 3. Simplified communication system with a T/2-fractionally-spaced
DFE.

III. ERROR FUNCTIONS AND THE PROPOSED ALGORITHM

To overcome the drawbacks of the constant-modulus-based

DFE, we focus on the following class of normalized algorithms
[

wf(n)
wb(n)

]

=

[

wf(n− 1)
[1− µ̃(n)λ(n)]wb(n− 1)

]

+ µ̃(n)e(n)u∗(n) + µ̃(n)λ(n)

[

gf(n)
0Mb

]

, (7)

where e(n) = eR(n) + jeI(n) is the estimation error with the

real and imaginary parts computed separately as in MMA [12],

the column vector u(n) is formed by the concatenation of the

input vectors of the filters, i.e.,

u(n) = [xT (n) âT

∆(n) ]
T
, (8)

(·)∗ stands for the complex-conjugate, 0Mb
is a null vector

with Mb elements,

µ̃(n) =
µ

δ + ‖u(n)‖2
, (9)

being 0 < µ < 2, δ a regularization factor, and ‖ · ‖ the

Euclidean norm. The Lagrange multiplier λ(n) and the vector

gf(n) appear in (7) to avoid degenerative solutions.

The degenerative solutions occur when the signal at the

equalizer output is independent of its input, presenting a

constant or oscillatory behavior. To avoid these undesirable

solutions, [6] imposed a constraint in the constant modulus

criterion, leading to the algorithm DFE-CMA-FB. This algo-

rithm computes the variable

c(n) = ‖wb(n− 1)‖2 − Eyf
(n),

in which Eyf
(n) represents an estimate of the power of yf(n).

According to the proof presented in [6], to avoid degenerative

solutions, c(n) must be always less than or equal to zero.

Therefore, if c(n) ≤ 0, the Lagrange multiplier λ(n) is made

equal to zero and DFE-CMA-FB works like the conventional

CMA. On the other hand, if c(n) > 0, it adjusts the updating

of wf and wb with λ(n) = ℓo (positive constant). The

vector gf(n) represents an estimate of the cross correlation

between the vector x(n) and the output of the feedfoward

filter yf(n). Here, we extend the constraint of [6] to the class

of algorithms (7).

In the sequel, we analyze different error functions e(n), in

order to verify some desirable characteristics for the equaliza-

tion of QAM signals. All the error functions considered here

can be used in (7) to obtain different versions of algorithms

to blindly adapt a DFE.

In the multimodulus algorithm, the estimation error e(n) is

defined in terms of its real and imaginary parts separately, i.e,

eMMA(n) = [r − y2
R
(n)]yR(n) + j[r − y2

I
(n)]yI(n), (10)

where yR(n) and yI(n) are the real and imaginary parts of

y(n), respectively, and r is the dispersion factor [12]. In

the case of square QAM constellations, r is the dispersion

constant, being the same for both real and imaginary parts,

i.e.,

r=
E{a4

R
(n)}

E{a2
R
(n)}

=
E{a4

I
(n)}

E{a2
I
(n)}

, (11)

where E{·} is the expectation operator, and aR (resp., aI)

represents the real (resp., imaginary) part of all possible

transmitted symbols.

Fig. 4 shows the real part of the MMA error, denoted by

eMMA,R(n), as a function of yR(n), assuming a 64-QAM signal

(the figure for the imaginary counterpart is identical). The real

part of the MMA error is equal to zero when y2
R
(n) is null or

when y2
R
(n) is equal to the dispersion constant r. Furthermore,

|eMMA,R(n)| assumes a value from the set {36, 60, 84},

when yR(n) is equal to one of the symbols coordinates

{±1, ±3, ±5, ±7}. Therefore, similarly to CMA, MMA

exhibits a large steady-state mean-square error (MSE) for

nonconstant modulus signals.

In order to reduce the steady-state MSE of MMA, different

approaches were proposed in the literature. This is the case of

Sliced-MMA proposed in [20], where the dispersion constant

is weighed based on the constellation size and on the magni-

tude of the transmitted symbols. Although its error function

is reduced when y(n) is equal to the constellation symbols, it

is not enough to reduce substantially the steady-state MSE of

MMA.

Another approach was proposed in [17], where CMA op-

erates concurrently with the last stage of the soft decision-

directed (SDD) algorithm. This algorithm was extended in [13]

and [14] to blindly adapt a DFE, considering DFE-CMA-FB

rather than CMA. Through simulations, it was shown in [17],

[13], [14] that, at the cost of a moderate increase in computa-

tional complexity, the concurrent algorithms CMA+SDD and

NDEG-SDD-CMA can present an improvement in equaliza-

tion performance over CMA and DFE-CMA-FB, respectively.

To illustrate the error function of the CSD algorithm (the

MMA version of NDEG-SDD-CMA), Fig. 5 shows the real

part of the error eCSD,R(n) as a function of the real part

of the equalizer output yR(n) for 64-QAM. Unlike MMA,

the error of CSD is close to zero when the equalizer output
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Fig. 4. Real part of the error of MMA as a function of yR(n) for 64-QAM.

coincides with the transmitted signal, which is responsible for

the reduction of its misadjustment. Unless a scale factor, it

is possible to recognize in the figure an error pattern which

repeats in regions containing the real part of two symbols of

the constellation. We can also observe that the error function

presents three zero-crossings in each region. However, only

two zero-crossings are necessary since each region contains

two symbol coordinates. It is important to notice that the

good behavior of the CSD algorithm depends on the shape

of its error function, which in turn, depends on the ratio of

step-sizes µSDD/µMMA. If, for example, µSDD/µMMA = 100,

the error of CSD will be farther from zero when the equalizer

output coincides with the transmitted signal, which deteriorates

its performance. Therefore, it is not always easy to ensure a

good performance of the CSD algorithm.
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Fig. 5. Real part of the error of CSD as a function of yR(n) for 64-QAM;
µSDD/µMMA = 500.

Inspired in the CSD error function and using an MMA-

like implementation, we propose the symbol-based decision

(SBD) algorithm, which can be interpreted as an extension

of the decision-directed algorithm for blind equalization of

QAM signals. The error of the proposed algorithm is shown

in Fig. 6, where the real part of the error eSBD,R(n) is plotted

as a function of the real part of the equalizer output yR(n) for

64-QAM. Unlike CSD, the SBD error is null only when the

equalizer output is equal to one of the constellation symbol

coordinates, which ensures its better behavior when compared

with MMA or with the CSD algorithm. It its important to

notice that there is an envelope in the SBD error, which

is essential for the recovery of the transmitted symbols as

observed in [21]. Without this envelope, the error function

coincides with that of the decision-direct algorithm, whose

good behavior is ensured only when the equalizer is close to

the optimal solution. The expression for the SBD error is given

by

eSBD(n)= |âR(n)|[âR(n)−yR(n)]+j|âI(n)|[âI(n)−yI(n)], (12)

where âR(n) (resp., âI(n)) is the nearest real (resp., imaginary)

part of the constellation symbol from yR(n) (resp., yI(n)), and

|âR(n)| and |âI(n)| are responsible by the envelope of the error

function.
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Fig. 6. Real part of the error of SBD as a function of yR(n) for 64-QAM.

A summary of the SBD algorithm is shown in Table I, where

step[x]={1 if x ≥ 0; 0 if x < 0} is the step function, α is a

forgetting factor, and dec[x] is the nearest symbol coordinate

from x. It is usual to assume ℓo = 2 and α = 0.95.

The computational cost per iteration of SBD is shown in

Table II, considering the number of real multiplications, real

additions, real divisions, comparisons (C), and exponential

computations (exp). The scalar S representes the number of

constellation symbols. The complexity of SBD is compared to

those of DFE-MMA-FB (the MMA version of DFE-CMA-FB)

and CSD. As we can observe in the table, the CSD algorithm

requires more operations per iteration than SBD, which in turn,

requires almost the same number of operations per iteration

of DFE-MMA-FB.

IV. ON THE CONVERGENCE AND STABILITY

In this section, we propose a method to improve the

convergence rate of the SBD algorithm, exploring the neigh-

borhood of the estimated symbol. We also analyze its stability,

assuming λ(n) = 0.

A. Improving the convergence with the neighborhood

At the initial iterations, the coefficient vectors wf and wb,

updated with the SBD algorithm, can be very distant from

the optimal solution, and the signal â(n−∆) can represent a
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TABLE I

SUMMARY OF THE SBD ALGORITHM.

Initialize the algorithm by setting:

wf (0) = [ 0 · · · 0 1 0 · · · 0 ], ℓo = 2

wb(0) = 0, gf(0) = 0, Eyf(0) = 0, 0 ≪ α < 1

0 < µ < 2/
√
S, δ : small positive constante.

For n = 1, 2, 3 . . . , compute:

u(n) =
[

xT (n) âT

∆
(n)

]T

yf(n) = xT (n)wf (n− 1)

yb(n) = âT

∆
(n)wb(n− 1)

y(n) = yf(n) + yb(n)

yR(n) = Re[y(n)]; yI(n) = Im[y(n)]

âR(n) = dec[yR(n)]; âI(n) = dec[yI(n)]

eR(n) = |âR(n)|[âR(n)− yR(n)]

eI(n) = |âI(n)|[âI(n)− yI(n)]

e(n) = eR(n) + jeI(n)

Eyf (n) = αEyf (n− 1) + (1− α)|yf(n)|2

gf(n) = αgf(n− 1) + (1− α) yf(n)x
∗(n)

c(n) = ‖wb(n− 1)‖2 − Eyf (n)

λ(n) = ℓo step[c(n)]

µ̃(n) =
µ

δ + ‖u(n)‖2

wf(n) = wf(n− 1) + µ̃(n)[λ(n)gf (n) + e(n)x∗(n)]

wb(n) = [1− µ̃(n)λ(n)]wb(n− 1) + µ̃(n)e(n)â∗

∆
(n)

end

TABLE II

COMPUTATION COST IN TERMS OF REAL OPERATIONS PER ITERATION.

Op. DFE-MMA-FB CSD SBD

× 18Mf + 14Mb 22Mf + 18Mb 18Mf + 14Mb

+15 +33 +13

+ 13Mf + 12Mb 19Mf + 18Mb 13Mf + 12Mb

+5 +11 +5

÷ 2 5 2

exp − 4 −
C 1 log2(S) log2(S) + 1

wrong decision, mainly in the presence of noise and for high-

order constellations. This issue can be worse in a DFE due to

the decision feedback, which also generates error propagation.

To improve the convergence of the SBD algorithm, we

can use the philosophy proposed in [22]. Assuming a square

S-QAM constellation, the real line can divided into
√
S

regions Ak,R with symbol coordinates ak,R, being k =
−
√
S/2, · · · ,−1, 1, · · · ,

√
S/2, as shown in Fig. 7 for the real

part of 64-QAM. Assuming that the real part of the equalizer

output falls in the region Aℓ,R, the error should take into

account not only the region Aℓ,R, but also the regions Aℓ−1,R

and Aℓ+1,R in its neighborhood. Note that, aℓ,R = âR(n) =
dec[yR(n)] and aℓ±1,R = âR(n) ± 2. Furthermore, if Aℓ,R is

a region of the constellation edges, there will be only inner

neighbors. In the example of Fig. 7, the main region is A−1,R

and the neighboring regions are A1,R and A−2,R. Thus, the

real part of the SBD error can be computed as

eSBD,R(n) =

ℓ+1
∑

m=ℓ−1

γm,R|am,R| [am,R − yR(n)] , (13)

where γm,R = 1 for m = ℓ (main region) and γm,R = 2−2 for

m = ℓ± 1 (neighboring regions). The same procedure should

be considered for the imaginary part yI(n).

equalizer output (real part)

neighbor main region neighbor

yR(n)

A-4,R A-3,R A-2,R A-1,R A1,R A2,R A3,R A4,R

a-4,R a-3,R a-2,R a-1,R a1,R a2,R a3,R a4,R

-7 -5 -3 -1

0

0 1 3 5 7

Fig. 7. Regions of the real part of 64-QAM for SBD.

Despite the improvement in convergence rate, the neigh-

borhood of the estimated symbol may cause an increase

in the steady-state MSE. Thus, the aid of the neighbors

should be disregarded when the algorithm achieves the steady-

state. For this purpose, instead of weighting the neighboring

errors by γℓ±1,R = 2−2, we consider a time-variant function

γℓ±1,R(n) = 2−p(n), where

p(n) = 7.1467
1− e8[ξ(n)−0.03]

1 + e8[ξ(n)−0.03]
+ 9.1467, (14)

and ξ(n) = αξ(n− 1)+ (1−α)|ed(n)|
2 is an estimate of the

mean-squared decision error, being ed(n) = â(n−∆)− y(n)
and 0 ≪ α < 1 a forgetting factor. It should be notice that

2 ≤ p(n) ≤ 10 and that the smaller the MSE, the larger is

the value of p(n), and consequently the smaller the weights

γℓ±1,R(n). This function was experimentally chosen in [22].

Through simulations, we observe that p(n) is important to

make the MSE of the SBD algorithm smaller at the steady-

state.

Depending on the number of the constellation symbols, it

can be necessary to increase the number of neighbors. How-

ever, it is important to impose a distinction among the errors

calculated in the neighborhood and that of the main region,

i.e., the farther the neighbor, the smaller the weight γm,R.

Through simulations, we observed from 64 to 1024-QAM that

two neighbors for the real part and two for the imaginary part

are sufficient to improve significantly the convergence of SBD.

To include this improvement in the algorithm of Table I,

the error eR(n) should be replaced by (13) (analogously to the

imaginary part). Additionally, the parameter p(n) should also

be computed at each iteration. Since this technique requires

only computations of scalars and two exponentiations per

iteration, the complexity cost of the resulting algorithm is

slightly higher than that of Table II.

B. Stability issues

To facilitate the convergence analysis of the SBD algorithm,

we assume λ(n) = 0, i.e., we do not include the mechanism
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to avoid degenerative solutions. We first analyze the algorithm

without neighbors and in the sequel, we consider two neigh-

bors in the analysis.

In the case without neighbors, we particularize the error of

the SBD algorithm by replacing the factors |âR(n)| and |âI(n)|
by max

{

|âR(n)|, |âI(n)|
}

, which leads to

eSBD(n) = max
{

|âR(n)|, |âI(n)|
}

[â(n−∆)− y(n)] . (15)

Note that â(n − ∆) , âR(n) + jâI(n). Using (15) in

conjunction with convergence results for the normalized least

mean-square (NLMS) algorithm (see, e.g., [23, p. 80]), we

conclude that the SBD algorithm is stable if the step-size µ is

chosen in the interval given by

0 < µ <
2

√
S

<
2

max
{

|âR(n)|, |âI(n)|
} . (16)

Assuming now that yR(n) and yI(n) fall respectively in

Aℓ,R and Ak,I with neighbors Aℓ±1,R and Ak±1,I, and

using the symmetry properties aℓ±1,R = âR(n)± 2 and

ak±1,I = âI(n)± 2, we can show that the stability of the SBD

algorithm is ensured if µ is within the interval given by

0 < µ <
2

√
S(1 + 2γmax)

, (17)

where γmax = max{γℓ±1,R(n), γk±1,I(n)}. For γmax = 2−2,

this interval reduces to 0 < µ < 1.334/
√
S.

V. SIMULATIONS

In this section, we compare the performance of the SBD

algorithm with those of NLMS, CSD, and DFE-MMA-FB.

We also consider the Wiener solution, assuming its best

delay. For the performance evaluation of such algorithms it

was considered both the MSE and symbol error rate (SER)

curves. Constellation signals 64-QAM, 1024-QAM and 4096-

QAM were used as test signals. For 4096-QAM, the SBD

algorithm was implemented considering four neighbors for the

real components and four for the imaginary ones. For 64-QAM

and 1024-QAM constellations, only two neighbors for the real

components and two for the imaginary ones were used. Nor-

malized versions of all algorithms were implemented and their

step-sizes were adjusted to ensure their better performance in

terms of steady-state MSE. All algorithms adapt a T/2-DFE,

with the lengths of the feedforward and feedback filters ex-

perimentally chosen. The feedforward filter was implemented

with 118 coefficients considering center-spike initialization,

and the feedback filter with 20 zero-initialized coefficients.

The channel was obtained from “chan1.mat” of the database

available at in http://spib.rice.edu/spib/cable.html. For these

conditions a delay ∆ = 61 was chosen as the best delay.

Figures 8, 9, and 10 show the MSE along the iterations for

64-QAM, 1024-QAM, and 4096-QAM signals, respectively.

For these three simulations, we can observe that SBD algo-

rithm presents faster convergence an lower steady-state MSE

when compared to DFE-MMA-FB or to the CSD algorithm.

Additionally, only SBD achieves a steady-state MSE similar to

that of NLMS. Despite CSD achieves low steady-state MSE

for 64-QAM and 1024-QAM, the adjust of the CSD step-

size becomes more difficult as the order of the constellation

increases. This was particularly noted for the 4096-QAM

signal since, in this case, the CSD algorithm converges to

an MSE higher than that of SBD. It is also important to

notice that the steady-state MSE for both SBD and NLMS is a

little distant from steady-state MSE of the equivalent Wiener

solution. This distance occurs due to the initialization of these

algorithms, since they were initialized with the center-spike.

 

 

M
S

E
(d

B
)

CSD

DFE-MMA-FB

SBD

NLMS

Wiener

iterations

0

0

−5

−10

−15

−20

−25
1 2 3 4 5

×105

Fig. 8. MSE for DFE-MMA-FB (µ = 2×10−4), CSD (µMMA = 1×10−5,
µSDD = 1 × 10−2, ρ = 0.6), SBD (µ = 5 × 10−3), and NLMS (µ =
2× 10−3); average of 50 runs, SNR = 35 dB; 64-QAM.
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Fig. 9. MSE for DFE-MMA-FB (µ = 1×10−6), CSD (µMMA = 5×10−7,
µSDD = 1 × 10−2, ρ = 0.6), SBD (µ = 5 × 10−3), and NLMS (µ =
5× 10−2); average of 50 runs, SNR = 40 dB; 1024-QAM.
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Fig. 10. MSE for DFE-MMA-FB (µ = 2 × 10−7), CSD (µMMA = 3 ×
10−7, µSDD = 1 × 10−2, ρ = 0.6), SBD (µ = 2 × 10−3), and NLMS
(µ = 5× 10−2); average of 50 runs, SNR = 50 dB; 4096-QAM.
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Figures 11, 12, and 13 show SER curves as a function of

the signal-to-noise ratio (SNR) for 64-QAM, 1024-QAM, and

4096-QAM signals, respectively. For each constellation, the

SER curve of the AWGN channel was also shown. Lower SER

values are found for SBD algorithm when compared to those

of DFE-MMA-FB and CSD, specially for the 4096-QAM case.

Again, the performance of SBD is very close to that of NLMS.

As for the steady-state MSE, the behavior of both SBD and

NLMS is worse than that of the Wiener solution, due to the

initialization.
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Fig. 11. Logarithm of SER as a function of SNR; DFE-MMA-FB (µ =
2× 10−4), CSD (µMMA = 1× 10−5, µSDD = 1× 10−2, ρ = 0.6), SBD
(µ = 5× 10−3), and NLMS (µ = 2× 10−3); 64-QAM.
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Fig. 12. Logarithm of SER as a function of SNR; DFE-MMA-FB (µ =
1× 10−6), CSD (µMMA = 5× 10−7, µSDD = 1× 10−2, ρ = 0.6), SBD
(µ = 5× 10−3), and NLMS (µ = 5× 10−2); 1024-QAM.
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Fig. 13. Logarithm of SER as a function of SNR; DFE-MMA-FB (µ =
2× 10−7), CSD (µMMA = 3× 10−7, µSDD = 1× 10−2, ρ = 0.6), SBD
(µ = 2× 10−3), and NLMS (µ = 5× 10−2); 4096-QAM.

VI. CONCLUSIONS

We introduced a symbol-based decision algorithm for blind

equalization of quadrature amplitude modulation (QAM) sig-

nals using a decision feedback scheme. Independently of

QAM order, it presents: (i) an error equal to zero when the

equalizer output coincides with the transmitted signal; (ii)

simultaneous recovery of the modulus and phase of the signal;

(iii) a misadjustment close to that of the normalized least-

mean squares (NLMS) algorithm; (iv) a fast convergence; and

(v) the avoidance of degenerative solutions. Additionally, its

convergence is ensured when the step-size is properly chosen

and its computational cost is similar to that of DFE-MMA-FB.

REFERENCES

[1] J. Proakis, Digital Communications, McGraw-Hill, NY, 4th edition,
2001.

[2] R. L. Howald, “QAM bulks up once again: Modulation to the power
of ten,” in Proceedings of SCTE Cable-tec EXPO, 2002. Avaiable at
http://broadband.motorola.com/ips/pdf/QAM.pdf.

[3] W. Zhou and L. Zou, “Adaptive QAM transmission scheme to improve
performance on an AWGN channel,” U.S. Patent 2011/0090948A1, Apr.
21, 2011.

[4] G. D. Forney Jr., “Maximum-likelihood sequence estimation of digital
sequences in the presence of intersymbol interference,” IEEE Transac-

tions on Information Theory, vol. IT-18, pp. 363–378, May 1972.

[5] S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River,
4th edition, 2002.

[6] L. L. Szczecinski and A. Gei, “Blind decision feedback equalisers, how
to avoid degenerated solutions,” Signal Processing, vol. 82, pp. 1675–
1693, Nov. 2002.

[7] S. Bouchired, D. Roviras, and F. Castani, “Equalisation of satellite
mobile channels with neural network techniques,” Space Comm., vol.
15, pp. 209–220, 1998/1999.

[8] A. A. Rontogiannis and K. Berberidis, “Efficient decision feedback
equalization for sparce wireless channel,” IEEE Transactions on Wireless

Communications, vol. 2, pp. 570–581, May 2003.

[9] D. N. Godard, “Self-recovering equalization and carrier tracking in two
dimensional data communication system,” IEEE Trans. Commun., vol.
28, pp. 1867–1875, Nov. 1980.

[10] C. R. Johnson Jr. et al., “Blind equalization using the constant modulus
criterion: a review,” Proc. IEEE, vol. 86, pp. 1927–1950, Oct. 1998.

[11] K. N. Oh and Y. O. Chin, “Modified constant modulus algorithm: Blind
equalization and carrier phase recovery algorithm,” in Proc. of IEEE

Int. Conf. Commun., 1995, vol. 1, pp. 498–502.

[12] J. Yang, J.-J. Werner, and G. A. Dumont, “The multimodulus blind
equalization and its generalized algorithms,” IEEE J. Sel. Areas

Commun., vol. 20, pp. 997–1015, Jun. 2002.

[13] M. T. M. Silva, M. Miranda, and R. Soares, “Concurrent blind
decision feedback equalizer,” in Proc. of International Workshop on

Telecommunications (IWT), Santa Rita do Sapucaı́, MG, 2004, pp. 107–
112.

[14] M. T. M. Silva, M. D. Miranda, and R. Soares, “Concurrent algorithm
for blind adaptation of DFE,” Electronics Letters, vol. 41, pp. 928–930,
Aug. 2005.

[15] S. Chen, S. Mclaughlin, P. M. Grant, and B. Mulgrew, “Multi-stage
clustering equaliser,” IEEE Trans. Commun., vol. 43, pp. 701–705,
Feb./Mar./Abr. 1995.

[16] F. C. C. De Castro, M. C. F. De Castro, and D. S. Arantes, “Concurrent
blind deconvolution for channel equalization,” in Proc. of ICC’2001,
2001, vol. 2, pp. 366–371.

[17] S. Chen, “Low complexity concurrent constant modulus algorithm and
soft directed scheme for blind equalization,” IEE Proceedings - Vision,

Image, and Signal Processing, vol. 150, pp. 312–320, Oct. 2003.

[18] J. R. Treichler, I. Fijalkow, and C. R. Johnson Jr., “Fractionally spaced
equalizers,” IEEE Signal Process. Mag., vol. 13, pp. 65–81, May 1996.

[19] L. Qin et al., “Fractionally spaced adaptive decision feedback equalizers
with applications to atsc dtv receivers,” IEEE Transactions on Consumer

Electronics, vol. 50, pp. 999–1003, Nov. 2004.

[20] S. Abrar and R. A. Axford Jr., “Sliced multi-modulus blind equalization
algorithm,” ETRI Journal, vol. 27, pp. 257–266, Jun. 2005.

REVISTA TELECOMUNICAÇÕES, VOL. 13, Nº. 02, DEZEMBRO DE 2011 85



[21] J. Mendes Filho, M. T. M. Silva, and M. D. Miranda, “A family
of algorithms for blind equalization of QAM signals,” in Proc.

IEEE Int. Conf. Acoustics, Speech, and Signal Process., Prague, Czech
Republic, 2011, pp. 3388–3391.

[22] J. Mendes Filho, M. T. M. Silva, M. D. Miranda, and V. H. Nascimento,
“A region-based algorithm for blind equalization of QAM signals,” in
Proc. of the IEEE/SP 15th Workshop on Statistical Signal Processing,
Cardiff, UK, 2009, pp. 685–688.

[23] I. Mareels and J. W. Polderman, Adaptive systems: an introduction,
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