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Abstract— This work addresses the problem of lossless com-
pression of graylevel images using pattern matching. Even though
there are some image formats, such as TIFF and PNG, which use
this technique to reduce the size of image files, practical results
have shown that there are better compressors, such as JPEG-LS
and lossless SPIHT. Results of different schemes based on pattern
matching when compressing graylevel images are presented and
it shows their weak performances. The aim of this work is to
show that this low efficiency is in accordance with universal
source coding theory.

Index Terms— image coding, lossless image compression, pat-
tern matching coding, universal source coding

Resumo— Este trabalho aborda o problema da compressão
sem perdas de imagens em tons de cinza, usando a técnica de
casamento de padrões. Embora existam formatos de imagens (tais
como o TIFF e o PNG) que utilizam esta técnica para reduzir o
tamanho dos arquivos, resultados práticos mostram que existem
compressores melhores, tais como o JPEG-LS e a versão sem
perda do SPIHT. Neste trabalho são apresentados resultados da
compressão de imagens em tons de cinza através de diferentes
esquemas que utilizam casamento de padrões. Estes resultados
mostram um fraco desempenho dos codificadores baseados nesta
técnica. O objetivo deste artigo é mostrar que esta baixa eficiência
está de acordo com o que era esperado pela teoria da codificação
universal de fontes de informação.

Palavras chave— codificação de imagens, compressão sem
perdas de imagens, codificação por casamento de padrões,
codificação universal

I. INTRODUCTION

Image compression is a subject which has been studied for
more than two decades. In fact, the amount of information
represented by images is increasing rapidly in communication
networks and the design of efficient systems requires good
image compressors. Since lossy schemes can achieve much
better compression rates, the majority of work has focused
on that topic. However, in some applications, such as medical
imaging and remote sensing, a lossless system can be required.

The studies of pattern matching as a technique to solve the
data compression problem go back to the work of Lempel and
Ziv. Based on this technique, they introduced two different
versions of source codes, which nowadays are known as
LZ77 [25] and LZ78 [26]. The Lempel-Ziv encoders became
popular because they have a low computational complexity
and they are universal, that is, their performances converge to
the source entropy with high probability if the data was drawn
from an ergodic source [23], [26].
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The problem of image compression is a typical application
where universal source coding should be applied, since a good
probability model is a priori unknown. Many studies about
image compression using pattern matching were done in the
past. In fact, this technique has been used to design lossy
algorithms for graylevel images [1], [2], lossless schemes for
bi-level images [9] and lossless compressors for graylevel
images [7], [11], [16]. Furthermore some image formats, such
as TIFF and PNG, make use of this technique to compress
different kinds of images. However, the results obtained for
lossless graylevel image compression are poor when compared
to the results of other algorithms, such as JPEG-LS [19] and
lossless SPIHT [13].

This work uses some results of universal source coding
theory to improve the understanding of the performance of
pattern matching techniques when it is applied to losslessly
compress graylevel images. The text is organized as follows.
Section II addresses theoretical results of universal source
codes based on pattern matching. The subject of section III is
the lossless image compression problem. Section IV presents
practical performances of different schemes using pattern
matching and uses the theory to better understand these results.
Closing the work, section V presents the conclusion.

II. UNIVERSAL SOURCE CODING AND PATTERN
MATCHING

Universal source coding is an important and challenging
problem in information theory which has been studied for
a long time [5]. Its aim is to compress data generated by
a source with completely or partially unknown statistics. Let
X∞

1 = X1X2 . . . be the source output, which is a semi-infinite
sequence of random variables which can assume values in a
finite set A, according to a probability measure p. The set A
is called the source alphabet and p is the source probability
measure. It is well known that the rate H(Xn

1 )/n is a lower
bound for the compression rates of uniquely decodable binary
codes, where H(Xn

1 ) denotes the entropy of Xn
1 in bits.

Furthermore, if p is known, there are many algorithms (e.g.
arithmetic algorithm and Huffman algorithm) that can be used
to build encoders that achieve this rate except by a roundoff
error [4]. That is, if p is given, it is easy to present an encoder
C which maps any sequence xn

1 into a codeword C (xn
1 ) (finite

sequence of bits) such that

H(Xn
1 )

n
≤ E[|C (Xn

1 )|]
n

≤ H(Xn
1 )

n
+ O

(
1

n

)
, (1)

where E[|C (xn
1 )|] is the expected value of the codeword

length, |C (xn
1 )| (in bits). If the source entropy H exists, then

the rate of C converges to H when n grows indefinitely.
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In many practical situations an encoder C is used to
compress data produced by an unknown source or produced
by a group of different sources. In such cases, C must be
good enough to compress sources with different probability
measures. Pattern matching became a popular technique in
data compression because it solves this problem. In fact, if
X∞

1 is an ergodic process, in [26] it was proved that

|LZ78(Xn
1 )|

n
→ H, a.s. (2)

and in [23] it was shown that

|LZ77(Xn
1 )|

n
→ H, in probability (3)

The above results must be interpreted carefully. These
results show that for n sufficiently large the compression rate
is close to the source entropy with high probability. However,
in practice, n is bounded and the rate can be far from the
lower bound. Therefore, it is very important to know how
fast the rate converges to the entropy. Usually the speed of
convergence is measured by using the concept of redundancy.
Let S be a source which produces X∞

1 as output. The average
redundancy of C with respect to (w.r.t.) the source S is defined
as

RC ,n(S ) =
E[|C (Xn

1 )|]−H(Xn
1 )

n
. (4)

The objective of a universal source code is to compress effi-
ciently any source belonging to a class of sources. Therefore,
a good average redundancy w.r.t. a specific source S is not
a proof of efficiency for a universal code. There are different
methods to evaluate the performance of universal codes. One
of them, which is frequently used, is the minimax redundancy
of a class of sources. Let Ψ denote a class of sources and
let Γ be the set of all uniquely decodable binary codes. The
minimax redundancy of the class Ψ is defined as

Rn(Ψ) = min
C∈Γ

max
S∈Ψ

RC ,n(S ). (5)

The problem of finding the redundancy of a given class of
sources has been studied by many authors [6], [17], [24]. One
of the most famous results establishes that if Ψ is the class of
Markov sources,

Rn(Ψ) = Θ

(
log n

n

)
, (6)

see [6]. Even though universal source codes which achieve
that redundancy for Markov sources are known [12], [21], the
computational complexity of those codes increases with the
number of states of the Markov model and it can be difficult
to use them in some practical applications. Pattern matching
codes are an interesting alternative with low complexity.
Furthermore, if the memory of the source is not bounded,
as pointed out in [8], pattern matching may be the unique
practical solution to estimate the source probabilities.

Since LZ77 and LZ78 were introduced, many efforts were
done to compute their redundancies. Almost twenty years
later, it was shown that for Markov sources, the redundancy
of LZ78 is O (1/ log n) [14] and the redundancy of LZ77
is O (log logn/ log n) [15]. Therefore, the pattern matching
codes do not achieve the best redundancy for Markov sources.

III. LOSSLESS IMAGE COMPRESSION

Typically, a practical scheme used to losslessly compress
digital images has two steps. The first one is an image
transform which aims to reduce the statistical dependence
between pixels. The second step is an entropy code which is
built considering that the transformed image can be modeled
as a Markov source with a reduced number of states depending
on a few number of neighbor pixels.

The use of an image transform would be unnecessary if
a suitable probability model for the image sample, I , was
known and if a good probability measure estimate (based on
this model) could be extracted from I . However, in general, it
is hard to find a reasonable probability model such that a good
probability measure can be estimated efficiently. Actually, the
transformed image, T , is useful because good practical results
have been obtained when it is modelled as the output of a
Markov source with a reduced number of states.

Basically the best algorithms for lossless image compression
can be classified in two groups. The first one is composed
by algorithms which use an adaptive predictor to compute
the transformed image T (which is the prediction error in
this case). CALIC [22] and JPEG-LS [19] are two examples
of algorithms in this group. The compressors of the second
group make use of an integer transform based on signal
decomposition in orthogonal (or biorthogonal) functions, such
as the Discrete Cosine Transform (DCT) and a Discrete
Wavelet Transform (DWT). Examples of algorithms which
use this kind of transform are SPIHT [13] and the lossless
version of the JPEG2000 standard [18]. In general, an adaptive
prediction is used in lossless and near lossless schemes and an
integer transform is useful to design progressive compressors
(i.e., a lossless/lossy scheme).

After the transformation (prediction or an integer trans-
form), T is compressed by using an entropy code based on a
probability measure which is estimated considering that it is
the output of a Markov source with a low number of states.
The markovian model is used because it was observed that the
pixels of T still have a statistical dependence. Furthermore, the
number of states must be low since the size of image samples,
in general, is not large enough to permit a good probability
estimation based on a different model (which is known as
the context dilution problem). Golomb and arithmetic codes
are some examples of entropy codes which are used in many
lossless image compressors [13], [19].

IV. LOSSLESS IMAGE COMPRESSION USING PATTERN
MATCHING

Since the problem of lossless image compression can be
seen as a typical application of universal source coding theory,
many efforts were done to apply pattern matching to compress
digital graylevel images [7], [11], [16]. Even though this tech-
nique has been successfully used to compress text, the attempts
to use it in graylevel image compression led to poor results
when compared to the performances of other schemes. This
section presents the practical performance of several schemes
to losslessly compress graylevel images, based on pattern
matching. The practical results were obtained using three
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Fig. 1. Group of natural images

Fig. 2. Group of images from Landsat 5

different groups of images. The first one is composed by seven
Natural Images: Airplane, Baboon, Barbara, Lena512, Pep-
pers, Sailboat, Tiffany, which are available at www.cipr.rpi.edu
(homepage of the Center for Image Processing Research -
Rensselaer Polytechnic Institute, USA) and it is illustrated in
Figure 1. The second group is constituted by seven images
obtained from the Thematic Mapper of Landsat 5, which were
provided by the Brazilian National Institute for Space Rese-
arch. The images of this second group is presented in Figure
2. The composition of the last group is four Computerized
Tomography Images and four Magnetic Resonance Images,
which were also available at www.cipr.rpi.edu, see Figure 3.
Practical results are analyzed in the light of universal source
coding theory and this analysis is the main contribution of this
work.

Fig. 3. Group of medical images

The most trivial manner to compress digital images using
pattern matching is applying the algorithms directly. Even
though it is not obvious from their description, pattern mat-
ching algorithms as any universal source code are also proba-
bility estimators [10]. Since the number of pixels is small the
conditional probabilities can not be efficiently estimated and
thus the results obtained by this way are not competitive. In
fact, if the Natural Images are scanned by the Hilbert-Peanno
procedure [11], the most popular version of LZ78, which is
commonly called LZW [20], achieves 6,68 bpp (bits per pixel)
on average. Comparing this bit rate to the bit rate of JPEG-LS
(4,50 bpp on average) and to the bit rate of lossless SPIHT
(4,51 bpp on average) it can be noticed that this scheme is not
efficient.

In general, the convergence of the rate of a universal source
code depends of the source alphabet cardinality. Therefore,
in some applications, an improvement can be obtained if
the image bit planes are compressed independently (even
though this procedure neglects the statistical dependence of
bit planes). If the pattern matching algorithm is applied in
the image bit planes, its performance improve slightly (6,22
bpp). However, its result is still much worse than JPEG-LS
and lossless SPIHT bit rates.

An alternative way to improve the performance is to com-
press the transformed image T (obtained from an Integer
DWT, from an Integer DCT or from a predictor) employing a
pattern matching algorithm. Table 1 presents the performance
of LZW when it is used to compress independently the bit
planes of the prediction error generated by JPEG-LS. The
results presented in that Table are the average of the bit rates
(in bits per symbol) for each group of images. Results of
JPEG-LS and the sum of the bit planes first order entropy
estimations are also presented in Table 1. From these results,
it can be noticed that the LZW results are significantly worse
than the results of JPEG-LS. Furthermore, it is interesting to
observe that LZW results are still greater than the first order
entropy estimation, for all groups of images.

Table 2 presents the practical results of LZW when used
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TABLE I
LZW RESULTS (IN BPP) WHEN APPLIED IN BIT PLANES OF JPEG-LS

PREDICTION ERROR

Group of Images LZW Entropy JPEG-LS
Natural Images 4.89 4.72 4.50
Landsat Images 4.35 4.13 3.96
Medical Images 3.24 3.23 2.61

to compress the bit planes of the S+P transform. To make the
analysis easier, the sum of the bit planes first order entropy
estimations and the results of lossless SPIHT are also included
in Table 2. In this case, the results of the pattern matching
algorithm are significantly worse than the results of lossless
SPIHT and they are also greater than the first order entropy
estimation.

TABLE II
LZW RESULTS (IN BPP) WHEN APPLIED IN BIT PLANES OF S+P

TRANSFORM

Group of Images LZW Entropy SPIHT
Natural Images 5.08 4.93 4.51
Landsat Images 4.55 4.38 3.89
Medical Images 3.53 3.41 2.57

The performance of LZW when compressing the bit planes
of an Integer DCT was measured using the transform proposed
in [3]. Table 3 presents the practical results and the bit planes
first order entropy estimations. It is interesting to notice that
the LZW results are better than the entropy estimations.
However, the difference is around 1,7% in the worst case
(which is the group of Medical Images). In fact, a simple
second order entropy estimation, which is 4.09 bits per symbol
in the average for Medical Images, is enough to achieve a
better rate than LZW .

TABLE III
LZW RESULTS (IN BPP) WHEN APPLIED IN BIT PLANES OF AN INTEGER

DCT

Group of Images LZW Entropy
Natural Images 5,66 5,69
Landsat Images 4,85 4,91
Medical Images 4,12 4,19

Although the performance presented in Tables 1, 2 and 3
were obtained using the algorithm LZW , different pattern
matching algorithms achieve similar results. For example, the
standard PNG, which uses a algorithm based on LZ77 to
compress a prediction error, achieves a bit rate of 4.9 bits
per symbol in the mean for the group of Natural Images.
It is interesting to notice that LZW produces a similar bit
rate when used to compress the prediction error generated by
JPEG-LS, see Table 1.

The weak performance of pattern matching algorithm in
this specific application is frequently reported in the literature.
However, the published papers do not link this poor perfor-
mance to universal source coding theory. From theoretical
results of pattern matching codes it could be concluded that
this type of code is not effective for memoryless sources
or for Markov sources with a small number of states, as

pointed out in section 2. In fact, these results are related to the
problem of context dilution. Since pattern matching algorithms
build a large context dictionary, the estimation of conditional
probabilities is diluted, leading to a suboptimal convergence
rate for these classes of sources. However, it is important to
point out that even though the context dilution argument is
more intuitive, the redundancy rate is the quantitative measure
of the inefficiency of these algorithms for those classes of
sources.

Tables 1 and 2 show that pattern matching schemes do not
achieve even the estimations of the first order entropies, which
could be almost reached easily by the use of any source code
based on the frequency rate of bits. In the case of the Integer
DCT proposed in [3], reported in Table 3, LZW is slightly
better than the first order entropy, but is worse than the second
order entropy, which is also easy to be reached by the use
of any source code based on the pair of bits frequency rate.
Furthermore, if the performances of JPEG-LS and lossless
SPIHT were compared to the first order entropy estimation
of the transformed image, T , it would be noticed that these
algorithms results are not much lower than the estimative. In
fact, the average of the estimatives for JPEG-LS prediction
errors is 4.71, and the estimative for S+P transform is 4.76 in
the mean for the group of Natural Images. This kind of results
would be expected if the image transform could be modeled as
the output of a Markov source with a small number of states.
Therefore, considering that the Markovian is a good model,
the results presented here are in accordance with source coding
theory. On the other hand, if the aim of the analysis is to find a
good model for the image transform, these results can be seen
as an evidence that the Markovian is a reasonable model and
that models with larger number of states may be usefulness.

Finally, it is important to mention that a more realistic model
could be obtained by the use of non stationary processes. In
fact, the algorithms used in SPIHT and in JPEG-LS do not
consider that the image transform is stationary. For example,
in the probability estimation of JPEG-LS, the pixels encoded
more recently have a larger weight than the pixels encoded in
the remote past. However, the improvement obtained by the
use of this kind of technique is very limited. Actually, from
the results of first order entropy estimation of T , which is
obviously based on a stationary model, it can be noticed that
this improvement is less than 10%. Furthermore, since the bit
rate of pattern matching algorithms is worse than the first order
entropy (or than the second order entropy), it is clear that the
non stationarity is not the reason of their poor performances.

V. CONCLUSION

This work presented a performance analysis of pattern
matching when losslessly compressing graylevel images on
the light of universal source coding theory. Practical works
on the area of image compression have shown that pattern
matching achieves weak results when compared to other
schemes, even though it is used in some image formats.
Practical results for three different groups of images using
the pattern matching technique over an prediction error, an
Integer Multiresolution Transform or an Integer DCT were
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presented, confirming the weak performance of this technique.
In general, the transformed images are modeled as a data
generated by a Markov source with few states. Based on
results of source coding theory, this correspondence shows that
the weak performance would be expected if the transformed
images are really well modeled by Markovian source with
a low number of states. Furthermore, the results presented
here can also be seen as another evidence that this model
is useful in image compression. Finally, it is important to
mention that pattern matching is an extremely useful tool in
data compression and it may be efficient even in different
problems concerning image processing. However, in lossless
graylevel image compression there are better solutions.
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