
Nonlinear System Identification with LAR
Catia Valdman, Marcello L. R. de Campos and José A. Apolinário Jr.

Abstract— In this paper, the use of the Least Angle Regression
(LAR) algorithm in combination with a Volterra filter is proposed
for nonlinear system identification. The LAR algorithm has been
used successfully in applications with sparse systems. Volterra
filters are known as a good model of nonlinear systems and
have been useful in a number of applications. However, only low
order Volterra models are usually employed due to the large
number of coefficients. Since the LAR algorithm indicates the
most correlated coefficients in an increasing way, one by one,
we propose to use this information to stop the LAR algorithm
when a number of desired coefficients are already calculated.
Hence, for a large order Volterra filter, the most important
coefficients will be evaluated independently of its kernel position.
To validate the proposition, we use third-order and fifth-order
Volterra filters with the LAR algorithm to identify two nonlinear
systems. Results of the LAR algorithm are compared to results
of the Least Squares and the Subset Selection algorithms.

Index Terms— LAR algorithm, nonlinear system, Volterra
filter.

Abstract— Neste artigo o uso do algoritmo Least Angle Re-
gression (LAR) em conjunto com um filtro Volterra é proposto
para a identificação de sistemas não lineares. O algoritmo
LAR vem sendo usado em sistemas esparsos com resultados
satisfatórios. Filtros Volterra são conhecidos por serem eficientes
para modelagem de sistemas não lineares e já foram utilizados
em diversas aplicações. Entretanto, na maioria das vezes, apenas
modelos Volterra de baixa ordem são utilizados devido ao seu
elevado número de coeficientes. Uma vez que o algoritmo LAR
indica os coeficientes mais correlatos acrescentando-os ao modelo
sempre de um em um, nossa proposta é utilizar esta informação
para interromper o algoritmo LAR quando um número desejado
de coeficientes já tiver sido calculado. Desta forma, para um
filtro Volterra de alta ordem, os coeficientes mais importantes
serão estimados, independente de sua posição no kernel. Para
validar esta proposta, utilizamos um filtro Volterra de terceira
ordem e um filtro Volterra de quinta ordem para identificar dois
sistemas não lineares. Os resultados obtidos pelo algoritmo LAR
são comparados com os resultados dos algoritmos Least Squares
e Subset Selection.

Index Terms— Algoritmo LAR, sistema não linear, filtro Vol-
terra.

I. INTRODUCTION

Nonlinear system models are used in many areas, such

as communication systems, power amplifiers, loudspeakers

with harmonic distortion and others [1]. The Volterra filter

is commonly used to identify nonlinear systems, however,

standard approaches tend to limit the order of the filter to

avoid a large number of coefficients. For example, in [2] and
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[3], adaptive second-order Volterra filters were used to model

nonlinear acoustic echo paths using the NLMS algorithm. In

[4], stationary and non-stationary signals which arise from

Volterra models were estimated using neural networks; again,

the second-order Volterra model was considered sufficient

for the purpose. In [5], a study was carried out for several

algorithms combined with Volterra filter to identify nonlinear

systems. The algorithms studied were: LMS, NLMS, RLS,

affine projection and summation affine projection; once again,

only second-order nonlinear components were treated [5].

The LAR algorithm was first developed and based on

diabetes studies [6]. Since then, it has been used in several

applications. In [7] and [8], models to text classification were

developed and up to 2,000 coefficients were chosen. In [9], the

LAR algorithm was used to estimate performance variability

of integrated circuits with a larger number of coefficients,

in the order of 104 to 106. By comparing the response

of the LS and the LAR algorithms, the authors concluded

that the LAR algorithm achieves up to 25x runtime speedup

without compromising any accuracy [9]. Recently, it has been

employed in image processing, for face representation and

recognition [10], and for face age estimation [11].

Based on the fact that the LAR algorithm is very useful

when dealing with sparse systems, indicating the most im-

portant coefficients to be used, and on its proven success

in several applications, we propose its use in combination

with the Volterra filter to identify nonlinear systems. In [12],

one nonlinear system using a third-order Volterra filter and

one using a fifth-order Volterra filter were identified with the

LAR algorithm. In this paper we provide a more in depth

description of this algorithm and add a new simulation where

the coefficients have higher magnitudes.

This paper is organized as follows. Section II describes how

a nonlinear system can be modeled and the importance of the

Volterra filter for this task. The LAR algorithm is addressed in

Section III. The proposed configuration is tested in simulated

scenarios and the results are shown in Section IV for Volterra

filters of third and fifth orders. Conclusions are drawn in

Section V.

II. NONLINEAR SYSTEMS AND THE VOLTERRA SERIES

Certain classes of nonlinear systems can be represented by

one of the three following cascade models [13]:

• LN – a linear filter followed by a memoryless nonlinea-

rity, known as the Wiener model;

• NL – a memoryless nonlinearity followed by a linear

filter, known as the Hammerstein model; and

• LNL – a linear filter, a memoryless nonlinearity and a

second linear filter.

It may be desirable to model them using a single Volterra

based filter [13], i.e., to use a Volterra series for describing the
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input-output relationship of a nonlinear device with memory

[14].

One advantage of using LNL system modeling is the small

number of coefficients when compared to the Volterra filter.

However, computing LNL coefficients may be more compli-

cated than calculating coefficients based on the Volterra filter

[14].

The Volterra series is a generalized extension of the linear

series and can be regarded as a general Taylor series of a

function with memory [14]. A discrete time-invariant and

causal nonlinear system with memory can be represented by

the following Volterra series expansion [5]

y(k) = h0 +
∞
∑

m1=0

h1(m1)u(k −m1)

+

∞
∑

m1=0

∞
∑

m2=0

h2(m1,m2)u(k −m1)u(k −m2)

+ · · ·+

∞
∑

m1=0

∞
∑

m2=0

· · ·

∞
∑

ml=0

hl(m1, · · · ,ml)

u(k −m1)u(k −m2) · · ·u(k −ml) + · · · (1)

where u(k) is the input signal, y(k) is the output signal and

hl(m1, · · · ,ml) is l-th order discrete Volterra kernel, i.e.,

h0 is the bias coefficient (DC component), h1(m1) are the

linear coefficients, h2(m1,m2) are the quadratic coefficients,

h3(m1,m2,m3) are the cubic coefficients, and so on [4]. The

number of coefficients in the kernel in a truncated Volterra

representation (finite number of delays) is calculated by [15]

#Coefficients =

(

l +m+ 1
l

)

=
(l +m+ 1)!

l!(m+ 1)!
(2)

where l is the Volterra order (nonlinear degree), and m is its

memory length (also known as dynamic order).

In signal processing, it is usual to represent the truncated

Volterra filter in a vector way [14]. For example, for a second-

order Volterra filter with memory length of one, i.e., l = 2 and

m = 1, the output signal is given by

y = hTu,

being

u = [u(k) u(k − 1) u2(k) u(k)u(k − 1) u2(k − 1)]T

the input signal and

h = [h1(0) h1(1) h2(0, 0) h2(0, 1) h2(1, 1)]
T

the coefficient vector, where h0 is not represented. For exam-

ple, with

h = [1 − 0.5 0 − 0.1 0]T ,

the output signal is

y = u(k)− 0.5u(k − 1)− 0.1u(k)u(k − 1).

This paper works with the third-order (l = 3) and fifth-

order (l = 5) filters and assumes that all the Volterra kernels

have finite memory length of four (m = 4) and six (m = 6),

respectively. Therefore, Eq. (2) yields either 55 or 791 possible

coefficients in the kernel (plus the DC component).

The main problem using Volterra-based adaptive filters is

that it is usually not practical, either because it takes a long

time to converge when using LMS-like algorithms, or because

it is too complex (too many coefficients) for LS-based algo-

rithms. However, modeling an LNL nonlinear system using

a Volterra filter yields a large number of zero coefficients.

Because of this sparsity characteristic, it is advantageous to

combine the Volterra filter with the LAR algorithm, described

in the next section.

III. THE LAR ALGORITHM

The Least Angle Regression (LAR) algorithm is a versatile

linear model algorithm first developed in 2004 [6]. LAR is

a forward stepwise algorithm, i.e., at each iteration a new

coefficient is added to the model [16]. Due to its increasing

order characteristic, it can be very useful to identify systems

with many null coefficients, such as nonlinear systems.

In order to build the model, as described in [6] and [16], the

LAR algorithm uses two main variables: the prediction vector

(ỹ) and the correlation vector (c). Both are updated at each

iteration and should be defined as ỹstep and cstep where step
is the algorithm iteration, but, for conciseness, the argument

step will be omitted. In that way, the first variable is defined

as

ỹ = XwLAR, (3)

where wLAR is the estimated coefficient vector and X is the

K × J input signal matrix defined as

X = [x(1) · · ·x(k) · · ·x(K)]
T

(4)

being x(k) the input signal vector defined as

x(k) = [x1(k) · · · xj(k) · · · xJ (k)]
T

(5)

where k is the time index, k = 1, 2, · · · ,K, and j is the

coefficient index, j = 1, 2, · · · , J . In Eq. (5), xj(k) is the

input signal of the jth coefficient at time instant k. The second

main variable, the correlation vector, is defined as

c = XT (y − ỹ) (6)

being y the reference signal vector defined as

y = [y(1) · · · y(k) · · · y(K)]T . (7)

In Eq. (6), the elements of vector c are designed as c(j), the

correlation value of the jth coefficient.

The key of the LAR algorithm is how to compute the

prediction vector (ỹ) and, hence, estimate the coefficient

vector, wLAR from Eq. (3). The prediction vector is influenced

by the coefficients in the active set (A), the subset of non-

zero coefficients. The coefficients that are not in the active

set compose the inactive set (I), meaning that they are still

equal to zero. At each iteration, a new coefficient is transfered

from the inactive set to the active set, meaning that this new

coefficient is, together with the others already in the active set,

more relevant to form the output signal. All coefficients in the

active set are equally correlated, i.e., they have the same value

of |c(j)|, j ∈ A.

The prediction vector is initialized to be equal to zero.

In the first step, the coefficient with the highest value of
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|c(j)|, i.e. the most correlated, is identified and the prediction

vector is implemented in its direction. The prediction vector

is implemented as much as another coefficient is as correlated

as the first one, i.e., having the same value of |c(j)|, j ∈
A. Then, in the second step, instead of implementing the

prediction vector in the direction of the second most correlated

coefficient, the algorithm proceeds to an equiangular direction

between the two most correlated coefficients. This procedure

continues throughout the execution of the algorithm: the direc-

tion followed by the prediction vector is equiangular among

the coefficients in the active set, thus giving the name of the

algorithm Least Angle Regression. Therefore, the maximum

number of steps, or algorithm iterations, corresponds to the

total number of coefficients. The LAR pseudocode is shown

in Algorithm 1, whereas a detailed explanation can be found

in [6].

Algorithm 1 LAR

input X, y

ỹ← 0
for step = 1 to J do

cstep ← XT (y − ỹ)
C ← max(cstep)
if step = 1 then

A ← j which resulted C
else

A = A ∪ j
end if

I = j /∈ A, j = 1, · · · , J
XA ← {}
for j = 1 to length(A) do

sj = sign(cstep(A(j)))
XA = XA ∪ sj .xj

end for

R = (XT
AXA)

−1

1 = ones(length(A))

B = (1TR1)−1/2

v = BR1

u = XAv

a = Xu

if step = J then

γ ← C/B
else

for cont = 1 to length(I) do

val1←
C − cstep−1(j)

B − a(I(j))

val2←
C + cstep−1(j)

B + a(I(j))
end for

γ ← min(val1, val2), val1 > 0, val2 > 0
j ← I(cont) which resulted γ

end if

ỹ← ỹ + γu
end for

wLAR ← (XTX)−1XT ỹ

As seen in Algorithm 1, the prediction vector is updated

according to the following equation (ỹ0 = 0)

ỹstep = ỹstep−1 + γstepustep, (8)

where γstep is the step size, ustep is the direction given by the

coefficients in the active set, and step = 0, 1, · · · , J denotes

the algorithm iteration. The cleverness of the LAR algorithm

is how to calculate u and γ at each step, supported by the

correlation vector.

As a consequence, the absolute value of the current corre-

lation vector decreases as the number of coefficients in the

active set increases. The more coefficients are used to predict

the final value, the smaller the error. In the last step, we wish

to have

c = XT (y − ỹ) = 0 (9)

leading to

XTy = XT ỹ (10)

which, using Eq. (3), yields to

XTy = XTXwLAR. (11)

LAR’s final solution, when all coefficients are calculated,

corresponds to the Least Squares (LS) solution wLS =
(XTX)−1XTy. (9) is known as the orthogonality principle.

The data normalization imposed by the LAR algorithm

assumes that vectors containing each coefficient input signal

at all time instants, i.e., xj = [xj(1) · · ·xj(k) · · ·xj(K)]
T

with j = 1, 2, · · · , J , have zero-mean and unitary length and

that the reference signal vector, y, as defined in Eq. (7), has

zero-mean. Besides, as proposed in [17], we also impose that

the reference signal vector, y, has unitary length. This means,

respectively,

K
∑

k=1

xj(k) = 0 =⇒ mxj
= 0; (12)

K
∑

k=1

x2

j (k) = 1 =⇒ ‖xj‖
2 = 1; (13)

K
∑

k=1

y(k) = 0 =⇒ my = 0; and (14)

K
∑

k=1

y2(k) = 1 =⇒ ‖y‖2 = 1. (15)

Therefore, to conform to these conditions, the coefficient

input signal vector should be transformed as

x̄j =
xj −mxj

||xj −mxj
||
, j = 1, · · · , J (16)

where mxj
=

∑K
k=1

xj(k)

K
is the mean value of the ele-

ments of the coefficient input signal vector such that X̄ =
[x̄1 x̄2 · · · x̄J ]. The reference signal vector should also be

transformed as

ȳ =
y −my

||y −my||
. (17)

where my =

∑K
k=1

y(k)

K
is the mean value of the elements

of the reference signal vector.
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Finally, the coefficient element is estimated by the LAR

algorithm, from Eq. (9) and data normalization, as

wj,LAR = ||y −my||
(X̄T X̄)−1X̄T ỹ

||xj −mxj
||

, j = 1, · · · , J (18)

and, thus, defining the coefficient vector as

wLAR = [w1,LAR · · · wJ,LAR]
T . (19)

IV. THE LAR ALGORITHM IN A NONLINEAR SYSTEM

IDENTIFICATION

In order to evaluate the performance of the Volterra filter in

combination with the LAR algorithm in modeling a nonlinear

system, the setup of a system identification, as depicted in

Fig. 1, was employed.

V

O

L

T

E

R

R

A

.

.

+

+

.

x(k)

L1 L2N

u(k)

r(k) z(k) n(k)

y(k)

ỹ(k)
wLAR

Fig. 1. Nonlinear system identification with Volterra filter and the LAR
algorithm.

The LNL model used to represent the unknown nonlinear

system has two linear filters with memory (L1 and L2) and one

nonlinearity (N ). Two different scenarios were simulated. In

the first scenario, each linear filter had memory length equal to

two and a nonlinearity of third-order. In the second scenario,

each linear filter had memory length equal to three and a

nonlinearity of fifth-order. As a consequence, the Volterra filter

was composed by a nonlinearity of the third-order and memory

length four in the first case, and by a nonlinearity of the fifth-

order and memory length six in the second case. Therefore, the

number of Volterra coefficients were 55 and 791, plus the DC

component, for the first and second experiments, respectively.

In Fig. 1, n(k) is a random observation noise.

In order to compare the performance of the LAR algorithm

in these experiments, we have computed the ordinary Least

Squares (LS) and the Subset Selection (SSS) solutions. The

SSS solution was obtained from the LS solution after forcing

the smallest coefficients (in magnitude) to be equal to zero.

A. First Scenario: Third-Order Volterra + LAR

For the first scenario, a third-order Volterra filter was

simulated. In that case, the first filter (L1) has a coefficient

vector set to

w1 = [0.5 1 0.5]
T

(20)

with an input signal vector defined as

u = [u(k) u(k − 1) u(k − 2)]
T
, (21)

whereas the second filter (L2) has a coefficient vector set to

w2 = [0.1 − 0.5 0.1]
T

(22)

with an input signal vector defined as

z = [z(k) z(k − 1) z(k − 2)]
T
. (23)

The optimal coefficient vector of the Volterra filter has 55

coefficients, but 28 result equal to zero. As a consequence,

the number of coefficients forced to be equal to zero in the

SSS algorithm was 28 and the number of coefficients forced

to be estimated in the LAR algorithm was 27.

1) Nonlinear System 1 (NL1): The LNL model to represent

the first unknown linear system was constructed as

L1 : r(k) = wT
1
u

N : z(k) = 0.1r(k)− 0.01r3(k)

L2 : y(k) = wT
2
z+ n(k) (24)

where w1, u, w2 and z are defined as in Eq. (20), (21), (22)

and (23), respectively, and r(k) is the nonlinearity input signal.

Fig. 2 shows the mean squared error (MSE) of the LAR

algorithm as a function of the algorithm steps, averaged in

time domain for 3, 000 samples. It is clear from this figure

that the number of relevant coefficients is not larger than 27,

as expected. Note that the observation error, set with variance

σ2

r = 10−6, is responsible for the -60dB of minimum MSE.

5 10 15 20 25 30 35 40 45 50 55
−65

−60

−55

−50

−45

−40

−35

−30

step

M
S

E
 (

d
B

)

 

 

LAR

Fig. 2. 3rd order, NL1: MSE result (time domain with K = 3, 000) for a
Volterra filter using the LAR algorithm.

To evaluate the influence of the amount of data, the MSE

of the LAR algorithm is shown in Fig. 3 as a function of the

algorithm steps and the number of samples, averaged for a

hundred runs for twenty sets of K, from K = 100 to K =
5, 000. The dark line highlights when the MSE reaches the

minimum. It can be seen that for over approximately K =
1, 800, from step = 27, the MSE is already -60dB, i.e. the

algorithm identifies as 27 the number of relevant coefficients,
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the correct amount. For K < 1, 800, the algorithm needs to

estimate more coefficients to get MSE = −60dB, but no

more than 40 coefficients (40 steps).
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Fig. 3. 3rd order, NL1: MSE result (time domain) over twenty sets of K for
a Volterra filter using the LAR algorithm.

The LAR algorithm was run again aiming the calculation

of 27 coefficients with a hundred runs averaged to calculate

the mean squared error for thirty different values of K, from

K = 100 to K = 3, 000, in steps of 100. For each set

of data, the last signal vector was used to calculate the a

priori error, not used to estimate the coefficients. The MSE

result and the norm of the difference between the estimated

and known coefficients, obtained from the LNL model, are

shown in Fig. 4. From the first figure, it can be seen that the

MSE converged for the LAR algorithm for K ≥ 1, 800, as in

Fig. 3, while the LS and SSS algorithms need less input data

to converge. From the second figure, it can be inferred that

the estimated coefficient vector is accurate, since the distance

between the coefficient vector estimated and known is very

small, less than -100dB for all algorithms, as can be evidenced

in Fig. 5 for the LAR algorithm.

Once, in this scenario, the LS algorithm reaches fast the

minimum MSE, also does the SSS algorithm. Despite the

fact that the SSS algorithm provides zero coefficients as does

the LAR algorithm, the SSS solution needs the full 55 LS

coefficients to make 28 of them equal to zero, while the LAR

algorithm uses only the 27 most correlated coefficients.

2) Nonlinear System 2 (NL2): The LNL model to represent

the second unknown linear system was constructed as

L1 : r(k) = wT
1
u

N : z(k) = r(k)− r3(k)

L2 : y(k) = wT
2
z+ n(k) (25)

The difference, when comparing NL1 to NL2, Eq. (24) to

Eq. (25), is only in the final coefficient magnitude, not in their

kernel position. The main objective here was to evaluate how

much the coefficient magnitude influences the results.

Fig. 6 shows the mean squared error (MSE), averaged in

time domain for 3, 000 samples, of the LAR algorithm as

a function of the algorithm steps. This time, the number of

0 500 1000 1500 2000 2500 3000
−65

−60

−55

−50

−45

−40

K

M
S

E
 (

d
B

)

 

 

LAR
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SSS

0 500 1000 1500 2000 2500 3000
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−100

−80
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K
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 −
 w

o
p

t||
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d
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LAR
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SSS

Fig. 4. 3rd order, NL1: MSE and the norm-2 of the difference between the
estimated and optimal coefficient vector.
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Fig. 5. 3rd order, NL1: Coefficients of the third-order Volterra filter: optimal,
known from the LNL model, and LAR estimate.

relevant coefficients was not larger than 29 instead of 27, result

obtained in NL1. This already suggests that the coefficient
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magnitude does influence the number of estimated coefficients

for a given amount of data (value of K). Still, the observation

error was responsible for the -60dB of minimum MSE.
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Fig. 6. 3rd order, NL2: MSE result (time domain with K = 3, 000) for a
third-order Volterra filter using the LAR algorithm.

Therefore, to evaluate the influence of the amount of data,

the MSE of the LAR algorithm is shown in Fig. 7 as a function

of the algorithm steps and the number of samples, averaged for

a hundred runs for twenty sets of K, from K = 100 to K =
5, 000. It can be seen that even with a high number of samples,

it is necessary to have 30 steps, i.e., 30 coefficients estimated

for the MSE converge to -60dB; for over approximately K =
2, 000 this number is already reached, as it can be evidenced

by the dark line. This time the LAR algorithm could not be

precise to define that there are 27 nonzero coefficients, but still

has close to 90% accuracy. This suggests that the minimum

number of coefficients to be estimated is somehow influenced

by the magnitudes of the nonlinear plant.
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Fig. 7. 3rd order, NL2: MSE result over all sets of K for a Volterra filter
using the LAR algorithm.

To observe the efficiency of the LAR algorithm estimating

the correct number of coefficients known from the LNL model,

the algorithm was then run aiming the calculation of 27

coefficients with a hundred runs averaged to calculate the mean

squared error for thirty different values of K, from K = 100
to K = 3, 000, in steps of 100. For each set of data, the last

signal vector was used to calculate the a priori error, not used

to estimate the coefficients.

The MSE result and the difference between the estimated

and known coefficients, obtained from the LNL model, are

shown in Fig. 8. The MSE result for the LAR algorithm was

not as satisfactory as it was in the first nonlinear system

simulated. This was, however, already expected, since the

number of coefficients to be estimated, from Fig. 7, should

be at least 30, instead of 27 previously known by the LNL

model and the number used of coefficients to be estimated by

the LAR algorithm. It can thus be concluded that the number

of coefficients to be estimated has a high influence in the final

results. Neither was the distance between the coefficient vector

estimated as good as it was in NL1, still reaching, however,

-60dB. Fig. 9 shows the coefficients (optimal and pbtained by

the LAR algorithm) for this experiment.
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Fig. 8. 3rd order, NL2: MSE and the norm-2 of the difference between the
estimated and optimal coefficient vector

3) First Scenario Conclusion: Based on the results so far,

we can confirm that the LAR solution was close to the

VALDMAN et al: NONLINEAR SYSTEM IDENTIFICATION WITH LAR 17



0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Coefficient (j)

w
(j
)

 

 
w

lar

w
opt

Fig. 9. 3rd order, NL2: Coefficients of the third-order Volterra filter: optimal,
known from the LNL model, and LAR estimated.

optimal solution, although we could notice a depreciation

of the results in the second nonlinear system simulated,

when the coefficients magnitude increase. How the coefficients

magnitudes offers the convergence of the LAR algorithm is

subject of resarch. The number of coefficients, in our example

previously known by the LNL model, is unknown in many real

scenarios. Still, 30 coefficients was the maximum number of

coefficients to be estimated, being 27 coefficients the correct

number knwon by the LNL model. It should be noted that

the coefficient Volterra kernel position is not important here;

the LAR algorithm selects the most correlated coefficients in

an independent way, occurring that in both nonlinear systems

simulated.

Considering just the algorithms which have zero coefficients

indeed, it could be concluded that the SSS solution presented

a better result than the LAR algorithm. However, it was just

possible because the number of zero coefficients was known

from the LNL model. Using the LAR algorithm this value

could be inferred. Even if the number of zero coefficients is

not know, the LAR algorithm can be forced to stop when MSE

has converged. Besides, the SSS algorithm needs to calculate

all LS coefficients and then force to zero a given number. The

LAR algorithm estimates the coefficients one by one and, since

less coefficients are estimated, computational complexity can

be reduced. Therefore, for sparse systems, the LAR algorithm

could be a good choice.

B. Second Scenario: Fifth-Order Volterra + LAR

A second experiment was designed, where a fifth-order

Volterra filter was employed. In that case the first filter (L1)

has its coefficient vector set to

w1 = [0.5 0.5 1 0.5]T (26)

with an input signal vector defined as

u = [u(k) u(k − 1) u(k − 2) u(k − 3)]
T
, (27)

whereas the second filter (L2) has a coefficient vector set to

w2 = [0.1 − 0.5 1 − 0.5]T (28)

with an input signal vector defined as

z = [z(k) z(k − 1) z(k − 2) z(k − 3)]
T
. (29)

The optimal coefficient vector of the Volterra filter has 791

coefficients, but 580 result equal to zero. Therefore, the

number of coefficients forced to be equal to zero in the SSS

algorithm was 580 and the number of coefficients forced to

be estimated in the LAR algorithm was 211.

1) Nonlinear System 1 (NL1): In this scenario, the only

LNL model to represent the unknown linear system was

constructed as

L1 : r(k) = wT
1
u

N : z(k) = 0.1r(k)− 0.01r3(k) + 0.01r5(k)

L2 : y(k) = wT
2
z+ n(k) (30)

where w1, u, w2 and z are defined as in Eq. (26), (27), (28)

and (29), respectively, and r(k) is the nonlinearity input signal.

Fig. 10 shows the mean squared error (MSE), averaged

in time domain for 10, 000 samples, of the LAR algorithm

as a function of the algorithm steps, where we can observe

that the number of relevant coefficients identified was close to

350 – 400. Hence, the number of null coefficients identified

by the LAR algorithm was not precise (only 211 should

be different from zero, known from the LNL model), but

still identifies close to 75% of the null coefficients. Once

again, the observation error, set with variance σ2

r = 10−6, was

responsible for the -60dB of minimum MSE.
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Fig. 10. 5th order, NL1: MSE result (time domain with K = 10, 000) for
a Volterra filter using the LAR algorithm.

To evaluate the influence of the amount of data, the MSE

of the LAR algorithm is shown in Fig. 11 as a function

of the algorithm steps and the number of samples, averaged

for sixteen runs for eleven sets of K, from K = 1, 000 to

K = 10, 000. The algorithm was not run for all steps, i.e., it

was not implemented till the estimation of the 791 coefficient,
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but just till the estimation of its 500 coefficient, since the

number of non-zero coefficients known by the LNL model

(211) was already reached by far. The dark line highlights

when the MSE reaches the minimum. It can be seen that for

over approximately K = 6, 000, from step = 350, the MSE

is -60dB. It can be seen that from this ammount, the rate of

convergence becomes slower.
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Fig. 11. 5th order, NL1: MSE result (time domain) over eleven sets of K

for a Volterra filter using the LAR algorithm.

The LAR algorithm was run again aiming the calculation of

211 coefficients with fifty runs averaged to calculate the mean

squared error for ten sets of K samples, from K = 1, 000 to

K = 10, 000, in steps of 1, 000. For each set of data, the last

signal vector was used to calculate the a priori error, not used

to estimate the coefficients. The MSE result and the difference

between the estimated and known coefficients, obtained from

the LNL model, are shown in Fig. 12.

It can be seen that the MSE resulted from the LAR

algorithm did not reach the minimum imposed by the noise

variance (−60dB) for any value of K, but reached the mini-

mum imposed by the number of coefficients calculated (close

to −40dB when J = 211 and K = 10, 000, from Fig. 10).

The number of coefficients estimated must be increased to

improve the results. It can be observed that the LS algorithm

reaches the minimum MSE imposed by the noise variance

with, approximately, K = 3, 000. From the second figure,

it can be inferred that the difference between the coefficients

estimated and the optimum value, obtained by the LNL model,

is close to -80dB for the LAR algorithm, still close to the

optimal solution. As in the first experiment, the SSS algorithm

had a good result, but it was just possible because the number

of zero coefficients was known from the LNL model.

Finally, the coefficient are shown in Fig. 13, we see that the

LAR solution is close to the optimal solution. Once again, the

coefficient Volterra kernel position is not important.

2) Second Scenario Conclusion: Based on the results, it

was evident that for higher order systems (over the fifth-order),

the convergence rate can be very slow. However, if reaching

the exact number of non-zero coefficients is not of prime

importance, the LAR algorithm could be an option; for the

simulated scenario, the minimum MSE can be obtained with
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Fig. 12. 5th order, NL1: MSE and the norm-2 of the difference between the
estimated and optimal coefficient vector
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Fig. 13. 5th order, NL1: Coefficient of the fifth-order Volterra filter acting:
optimal, known from the LNL model, and LAR estimated.

350 to 400 coefficients, reducing computational complexity

when compared to LS-like algorithms.
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V. CONCLUSION

From this work, it can be observed that, using the LAR

algorithm with a Volterra filter, it is possible to identify

the most relevant coefficients in nonlinear system modeling,

independently of its Volterra kernel, allowing the use of filter

with higher orders. First, the Volterra filter and the LAR

algorithm were briefly reviewed and a detailed pseudo code

was presented. The behavior of the LAR, the LS, and the SSS

algorithms were then compared in two simulated scenarios,

one using a third-order Volterra filter and another one using

a fifth-order Volterra filter. From the simulation results, we

were able to conclude that the LAR algorithm identifies the

number of coefficients to be estimated without requiring any

knowledge from the scenario; just with the input signal matrix

and the reference signal vector it is possible to identify a non-

linear system. Although the SSS algorithm has presented better

results (lower MSE and difference between the estimated and

the optimal coefficient vector) than the LAR algorithm, this

was only possible due the previous knowledge of the correct

order (the LNL model was known in advance); besides, the

SSS needs to fulfill the LS coefficients to force some of

them to zero. It was observed that the LAR algorithm has a

convergence rate which depends on the coefficients magnitude

and the system order; the convergence is slower with a large

amount of input data but this draw back could be overcome by

allowing a large number of coefficients when not enough data

is available. Therefore, using the LAR algorithm, one can infer

the number of coefficients to be estimated with the amount

of data available, or the amount of data required to estimate

an exact number of coefficients. A “stop criteria” as well

a convergence analysis of the LAR algorithm are currently

topics of our investigation.
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