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Abstract— Intrusion detection systems (IDS) are essential com-
ponents in a secure network environment, allowing for early
detection of malicious activities and attacks. By employing
information provided by an IDS it is possible to apply appropriate
countermeasures and mitigate attacks that would otherwise
seriously undermine network security. However, current high
volumes of network traffic overwhelm most IDS techniques,
requiring new approaches that are able to handle huge quantities
of traffic during analysis while still maintaining high throughput.
We propose an architecture for distributed Network Intrusion
Detection Systems where comprehensive data analysis is executed
in a cloud computing environment. Network traffic, operating
system logs and general application data are collected from
various sensors in different places in the network, comprising
networking equipment, servers and user workstations. The data
collected from different sources is aggregated, processed and
compared using the Map-Reduce framework, analysing event
correlations which may indicate intrusion attempts and malicious
activities. The proposed architecture is able to efficiently handle
large volumes of collected data and consequent high processing
loads, seamlessly scaling to enterprise network environments.
Also, differently from previous IDS models, it capable of detecting
complex attacks through the correlation of information obtained
from different sources, identifying patterns which may not be
apparent in centralized traffic captures or single host log analysis.
Besides an architecture description, we present feasibility results
based on experiments performed on real cluster and cloud
infrastructure.

I. INTRODUCTION

Intrusion Detection Systems (IDS) are important mecha-
nisms which play a key role in network security and self-
defending networks. Such systems perform automatic detec-
tion of intrusion attempts and malicious activities in a network
through the analysis of traffic captures and collected data in
general. Such data is aggregated, analysed and compared to
a set of rules in order to identify attack signatures, which
are traffic patterns present in captured traffic or security logs
that are generated by specific types of attacks. In the process
of identifying attacks and malicious activities, an IDS parses
large quantities of data searching for patterns which match the
rules stored in its signature database. Such procedure demands
high processing power and data storage access velocities in
order to be executed efficiently in large networks.

The first issue in designing intrusion detection systems
lies in efficient and comprehensive collection of data that
comprises activities in different network portions in order to
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obtain a general view of network activity. An IDS should
reach high collection throughput while collecting as much
data as possible. Once enough data is gathered, it is necessary
to rapidly analyse it and determine whether any attacks or
malicious activities are present, which is the main issue that
impacts IDS performance. Usually attack detection requires
processing collected data through pattern matching algorithms
in order to determine whether any of the patterns contained
in the signature database are present. Hence, if the quantity
of collected data is excessively massive, IDS performance is
seriously affected.

It is clear that overall Internet traffic has been growing expo-
nentially over the past few years and it is projected to maintain
such growth [1], which is illustrated in Figure 1. Such large
traffic volumes generate unforeseen analysis datasets which
overwhelm most of current IDS pattern matching approaches,
specially considering that most of this approaches are based on
centralized collection and processing of data. Centralized non-
parallel approaches to IDS data analysis and attack detection
are constrained by resource limitations of individual computer
systems, which lack the storage and processing resources for
handling the necessary quantity of data. Moreover, current
systems are based on very limited data collection methods
that mainly consider only network traffic data, excluding other
important sources such as operating system logs.

Fig. 1. Internet traffic growth since 2005 and projections for 2012 [1]

Most of current IDS architectures for infra-structured net-
works in current literature are based on centralized data
collection and processing by certain nodes and areas in the
network.This approach does not effectively result in a thorough
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view of localized malicious network activity in scenarios
where adversaries connect through different network access
media, such as wireless access points, virtual private networks
(VPNs) and spare cabled ethernet connections. Being focused
on the sole analysis of central traffic capture, the centralized
intrusion detection systems are incapable of detecting complex
attacks which generate patterns both in network traffic and
in application and operating system logs in multiple network
nodes. Furthermore, with rapidly growing network activity,
classical IDS rule parsing and data analysis mechanisms are
overwhelmed by the sheer volume of network traffic and data
collected, specially in large enterprise networks. Such systems
are not able to efficiently process this volume of data or to
scale as the network grows.

A. Related Works

In order to address these issues, new parallel network data
analysis approaches have been proposed but until now there
are few concrete proposals of a fully distributed intrusion
detection system architecture with distributed data storage and
processing. There are several interesting mobile agent based
approaches which transfer data storage and processing to the
actual hosts being analysed by setting up mobile agents at
each host and dynamically balancing storage and processing
loads [2] [3]. Another approach proposed in [4] builds on
mobile agents to collect data at different network hosts and
perform data mining in order tyo detect attacks and malicious
activities, thus obtaining nice scalability and a general view
of network activity while adaptively distributing load accross
several hosts. However, even though these architectures solve
the issues related to centralized data storage and processing,
in such a loosely coupled and dynamical scenario, various
security issues arise, such as authenticating the information
exchanged between agents and individual corruption of agents
by malicious applications, such as viruses and trojan horses.
Solving these security issues in uncontrolled environments
such as large scale networks is not trivial, thus reducing the
applicability of such solutions in real world systems.

In the realm of distributed network data analysis methods,
the approach of [5] to analysing internet traffic on MapReduce
clouds stands as a milestone in designing efficient distributed
IDS systems. The results in [5] show that it is possible to
efficiently obtain statistical data from very large raw traf-
fic capture datasets. The first approaches to analysing IDS
datasets on MapReduce based infrastructures were proposed
independently in [6] and [7], and consist in transfering data
storage and processing to the cloud in order to obtain better
efficiency, scalability and throughput. The approach of [7]
differs in that it also proposes an architecture for distributed
data collection which provides comprehensive data on overall
network activities across different individual systems.

Other interesting approaches are based on fast pattern
matching by custom FPGA designs [8] [9], which are able
to process several Gigabits of data per second, but still do
not solve storage issues. Also, these methods are considerably
more expensive and less scalable than software based tech-
niques, since they require purposely built hardware.

B. Our Contributions

We propose a novel distributed network intrusion detection
system architecture which decentralizes both data collection
and processing, thus achieving better scalability, faster data
analysis and better event detection probability. The proposed
architecture enjoys the following characteristics:

• Distributed data collection from multiple sources (e.g.
network traffic and operating system security logs) in
multiple network areas.

• Scalable storage in a distributed filesystem infrastructure.
• Scalable distributed data processing in cloud environ-

ments through the MapReduce framework.
• Implementable from widely deployed open source soft-

ware tools.
Data collected from various sources located at different

places in the network is correlated in order to detect complex
attacks which may not be apparent in the analysis of network
traffic. The proposed architecture is based on distributed
data analysis through the MapReduce framework in a cloud
computing environment with a distributed filesystem to rapidly
parse collected data. It is potentially capable of detecting
potential attack signatures with very high throughput while
delivering network management statistics. This architecture
scales to analyse the sheer quantity of data collected in
today’s growing enterprise networks while being able to detect
complex malicious activities. In order to prove the feasibility
of our approach we show that the MapReduce framework
and distributed filesystems are able to achieve the expected
data storage and processing performance through simula-
tions conducted using the Hadoop project implementation
of MapReduce algorithms. We also analyse the performance
of the distributed filesystem HDFS for such an application,
showing that it is possible to store and retrieve large quantities
of data with the necessary speed .

C. Organization

In Section II, we introduce the basic concepts and tech-
niques of classical intrusion detection systems. In Section II-A,
we discuss distributed intrusion detection systems, listing the
main characteristics, advantages and caveats of such systems.
In Section III, we describe the MapReduce framework used
for distributed data processing in cloud environments, also
commenting on its implementation by the Hadoop project
and its various components. In Section IV, we introduce our
architecture for cloud based distributed intrusion detection
systems and discuss its details. In Section V, we describe
the experiments conducted in order to attest the feasibility
of our proposed approach and the data obtained from these
experiments. Finally, in Section VI, we summarize our results
and conclude with promising directions for further research.

II. INTRUSION DETECTION SYSTEMS

In this section, we introduce the concept of intrusion
detection systems and the several approaches to building such
systems. We further classical works and techniques that relate
to the system proposed in this paper.
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Intrusion detection systems (IDS) automatically monitor
events occurring in a computer system or network in order to
detect malicious activities or security policy violations. IDSs
issue security alerts when an intrusion or suspect activity is
detected through the analysis of different aspects of collected
data (e.g. packet capture files and system logs). Classical
intrusion detection systems are based on a set of attack
signatures and filtering rules which model the network activity
generated by known attacks and intrusion attempts [10], [11].
There are also efforts towards the development of IDSs based
on machine learning techniques (such as neural networks) and
data mining which automatically identify and incorporate new
attack signatures [12].

Intrusion detection systems detect malicious activities
through basically two approaches: anomaly detection and
signature detection [12], [13].In traffic anomaly detection, first
a standard traffic pattern statistical profile is established and
then it is compared current traffic in order to detect any
deviation from the expected normal behavior. In signature
detection (which has been discussed before), network traffic is
compared with attack signatures stored in a database in order
to detect- specific attacks [14]. Anomaly detection is capable
of identifying attacks that were not previously observed but
this kind of technique is always subject to a high rate of false
positives.

Intrusion detection systems are classified in mainly two
groups Network Intrusion Detection Systems (NIDS), which
are based on data collected directly from the network, and
Host Intrusion Detection Systems (HIDS), which are based
on data collected from individual hosts. HIDSs are composed
basically by software agents which analyse application and
operating system logs, filesystem activities, local databases
and other local data sources, reliably identifying local intrusion
attempts. Such systems are not affected by switched network
environments (which segment traffic flows) and is effective in
environments where network packets are encrypted (thwarting
usual traffic analysis techniques) [15]. However, they demand
high processing power overloading the nodes’ resources and
may be affected by denial-of-service attacks.

Network intrusion detection systems identify attacks
through the analysis of network traffic capturd at the net-
work border, thus containing traffic flowing to and from all
internal hosts. This kind of IDS is capable of processing
packet captures containing traffic from several nodes with
little or no network overload [16]. It is secure against internal
and external attacks as it functions invisibly in the network,
simply capturing packets in promiscuous mode. In face of the
growing volume of network traffic and high transmission rates,
software based NIDSs present performance issues, not being
able analyse all the captured packets rapidly enough. Some
hardware based NIDSs offer the necessary analysis throughput
[8] but the cost of such systems is too high in relation to
software based alternatives. The generic structure of a network
intrusion detection system is illustrated in Figure 2.

Fig. 2. The Structure of a Network Intrusion Detection System

A. Distributed Data Collection and Correlation

Current networking environments are becoming increas-
ingly heterogeneous and complex, incorporating several access
media and network access which contribute to the decen-
tralization and segregation of network traffic and activities.
Moreover, in large networks, different areas are usually seg-
mented from each other for security and organization reasons.
This separation occurs in different layers, depending on the
method utilized (e.g. IEEE 802.1q VLANS or Routing) and
offering different segregation levels . The heterogeneous and
decentralized nature of current networks results in significant
portions of traffic and activities being restricted only to certain
areas of the network (specially when different access media is
used) and never reaching central or border nodes.

In face of this situation, classic network intrusion detection
systems do not efficiently identify attacks in large heteroge-
neous networks due to their inherent centralized nature. While
NIDSs are commonly placed in central or border regions of the
network (e.g. next to gateways, servers or firewalls), malicious
activities which occur inside the network and are restricted
to a specific region may not generate traffic reaching the
NIDS nodes. In such scenarios, it is unlikely that the central
NIDS nodes would detect all insider and outsider attacks and
intrusion attempts directed to the network. Furthermore, large
scale networks frequently provide several access points and
gateways, requiring NIDS systems to be deployed in each of
them in order to guarantee thorough monitoring.

In order to effectively capture representative data of network
activities it is necessary to collect and analyse IDS data in a
distributed manner, ensuring that malicious activities occurring
in different layers of isolated network regions are detected. The
concept of distributed intrusion detection systems (DIDS) was
first proposed in [17], where a system composed of distributed
sensors and a centralized analysis system is introduced. This
DIDS basically consists in collecting data from heterogeneous
sources located in different areas of the network, aggregating
this data in a centralizer host referred to as director and
finally analysing it locally using standard intrusion detection
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algorithms. It is important to notice that the proposed DIDS
collects not only traffic but also audit traces from different
nodes in the network, making it possible to identify subtle
and complex attacks through data fusion and event correlation
techniques. The general structure of a distributed intrusion
detection system is depicted in Figure 3.

Fig. 3. The Structure of a Distributed Intrusion Detection System

While such system provides a nice solution for moderately
large network setups with moderate traffic throughputs, in high
throughput settings its performance can be seriously affected.
However, it provides the basic structure that an efficient dis-
tributed intrusion detection system should follow, only failing
in the centralized storage and processing of information. A
similar approach is presented in [18], where classic DIDS
techniques are coupled with cooperative intrusion detecting
agents that analyse the strategy utilized by attackers. Once
again, this approach solves the distributed data collection
issues but does not address issues regarding data storage and
processing in traffic intensive environments.

Recent research on attacks detection in distributed honey-
pots and honeynets indicate that it is feasible to implement
distributed data collection architectures spanning a large num-
ber of heterogeneous nodes located in different networks [19].
An intelligent distributed intrusion detection system based on
honeynets for data collection and mobile agents for distributed
data processing was proposed in [20]. This DIDS is capable
of processing a large quantity of logs through workload
distribution but attack detection is restricted to the honeynet
area. Even though these experiments were conducted on hon-
eypot infrastructures, they provide nice evidence regarding the
feasibility of building such distributed network data collection
and analysis systems for large scale network environments.

III. CLOUD COMPUTING AND THE MAP-REDUCE
FRAMEWORK

In this section we discuss the basic concepts of cloud
computing and the MapReduce framework, introducing the

architecture of the MapReduce implementation provided by
the Hadoop project.

The constant and rapid growth in the volume of data
and communications in current networks and information
systems raises the need for efficient scalable data storage and
processing techniques. In order to address this issue, a new
paradigm commonly called cloud computing was introduced.
The main characteristic of this paradigm is the decentralization
of data processing and storage through clustered environments
that seamlessly scale to fit the constantly increasing demand,
offering high performance and achieving efficient response
times.

Usually a cloud computing environment is composed by a
data processing cluster coupled with a storage area network to
provide easily scalable resources. The users and applications
access this environment seamlessly and transparently through
standard API frontends, eliminating the need for knowledge
of the specific network infrastructure and underlying services.
Such architectures enable fast development and provisioning
of large scale applications that handle a high number of
requests or large quantities of data. Applications running
on a cloud environment are able to scale transparently and
automatically by simply adding more cloud resources, which
are handled by the corresponding API. The overall structure
of a generic cloud computing environment is illustrated in
Figure 4.

Fig. 4. The Structure of a Cloud Computing Environment

A cloud application can be easily developed by utilizing
the proper frontend API calls to perform the desired actions
on the cloud environment (e.g. store and retrieve files or sort
data). After an application is functional, it can be transparently
scaled by adding more cloud storage or processing resources.
Hence, cloud applications can potentially scale to handle any
quantity of data. These characteristics make such platforms
ideal for constructing efficient and scalable distributed intru-
sion detection data analysis systems.

Among the several approaches to cloud computing based
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solutions there is the MapReduce framework [21], which was
first introduced by Google and can be employed for scalable
large dataset processing. This framework comprises both data
storage solutions (distributed filesystems and databases), man-
agement tools and a full distributed data processing environ-
ment (including support for different programming languages).
Different types of processing intensive applications may take
advantage of this framework to perform common tasks over
large volumes of data. For example, this framework has al-
ready been successfully applied by large companies to perform
the following tasks: search engine indexing, statistical data
analysis, business intelligence and document indexing.

The main concept of Map and Reduce was introduced in
classical functional programming languages (e.g. LISP) and
consists in splitting computing tasks over large inputs into sev-
eral steps whose output is then combined into the final output.
A MapReduce application takes as input a series of key/value
pairs and outputs other key/value pairs, relying on basically
two functions to perform the actual computing, namely: Map
and Reduce. The Map function takes as input a pair and
splits it into a set of transitory key/value pairs. After the input
is processed and mapped into transitory key/value pairs, the
Map function hands its output to the Reduce function. Upon
receiving a given key ”X” and a set of values related to this
key, the Reduce function aggregates the transitory results and
process the data in order to obtain the final expected output.

This approach makes applications extremely flexible, since
MapReduce allows for dynamic configuration of the quantity
of maps and reduces. In other words, it is possible to configure
the granularity of the data splitting process, thus adjusting the
size of transitory key/value pairs that are distributed among the
processing nodes in the cloud. The main issue in designing
MapReduce applications lies in writing optimal map and
reduce functions and determining the optimal number of maps
for the specific application and the environment where it is
executed. This choice is important in order to optimize storage
resources access and the utilization of each cloud node’s
processing resources.

A. The MapReduce Architecture

A typical MapReduce cloud environment consists in master
node, worker nodes and a distributed filesystem access through
the environment. The master node acts as a frontend to the
cloud environment, receiving jobs and distributing computing
loads and the necessary data among the worker nodes. The
worker nodes are common compute nodes, which actually
perform the desired computation on the provided data and
send their outputs back to the master node. In this paper,
we focus on the MapReduce implementation of the Hadoop
project, which already includes the MapReduce processing
environment, a distributed filesystem (Hadoop File system),
several API spanning many languages and accessory manage-
ment services. A Hadoop environment mainly consists in the
same components depicted in Figure 4. In order to coordinate
the interaction between the master node, the several worker
nodes, the distributed filesystem and other components that
may exist in the cloud, Hadoop provides a set of backgorund

control services that run on each node, providing the master
node with information about all the worker nodes and the other
cloud components.

1) The Hadoop File System: Before analysing the details
of the actual MapReduce data processing in a Hadoop envi-
ronment, it is necessary to first consider the structure of its
distributed file system. Hadoop File System (HDFS) consists
in volumes spread among the compute nodes in a Hadoop
cloud, thus leveraging each individual node’s data storage
resources to build big volumes. Besides the clear advantage
of simply relying on the storage resources that are already
commissioned on the cluster, this architectural characteristic
brings another important benefit. Since the data is already
located in the compute clusters, it is not necessary to fetch it
from a separate storage area network when its needed during
computation. This reduces network loads and setup times
before a given application can be processed.

Fig. 5. The Architecture of the HDFS Filesystem [22]

A HDFS environment is mainly composed by NameNodes
and DataNodes, which are loosely equivalent to master nodes
and worker nodes from a MapReduce perspective. When a
file is stored in an HDFS volume, it is divided into several
slices, that are subsequently spread across different nodes that
together provide physical storage resources for the volume.
Due to their similarity to the master and worker nodes in a
MapReduce environment, the NameNode and DataNodes in a
Hadoop setting are usually associated to the master node and
the worker nodes, respectively. However, it is possible to set
up an HDFS environment with more than one NameNode for
backup and high availability support.

The NameNode is responsible for maintaining a central
catalogue of the directory structures and files stored in each
volume, which contains pointers to the location (i.e. DataNode
address) of the slices of each file that are spread across the
volume. It also handles all volume operations, such as read
and write, acting as a frontend to the volume. The DataNodes
are responsible for actually storing data, keeping slices of
the files stored in the volume, providing access to the data
that is stored locally and providing control information about
the status of this data. The NameNode polls DataNodes in
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order to obtain information about data integrity and performs
data slice replication tasks to distribute different slices of
files across different DataNode, providing protection against
failures of individual nodes. The general architecture of an
HDFS environment is depicted in Figure 5.

2) The Hadoop MapReduce Architecture: In a Hadoop
environment the MapReduce framework is strongly coupled
to the HDFS filesystem by several control services in order
to form an scalable and resilient cloud infrastructure. The
master node is mainly composed by the JobTracker and
NameNode services. JobTracker is a service determines the
worker nodes that have access to the necessary data and
that are available to receive tasks. Based on the information
collected from individual worker nodes, it allocates tasks to
proper worker nodes. Jobtracke also collects information on
each running and scheduled task from the worker nodes, which
it uses to allocate nodes and provide user with statistical and
mangerial information on the overall cloud status. NameNode
simply acts as a NameNode for the Hadoop File System
distributed filesystem. Client MapReduce applications access
the NameNode service in order to perform tasks such as add,
copy, move or delete on files stored in HDFS volumes.

The rest of the cluster worker nodes run other two services
that compose the processing environment and data storage
architecture, namely: TaskTracker and DataNode. TaskTracker
receives tasks (i.e. Map, Reduce and Shuffle) from the Job-
Tracker in the master node and reports back to the master node
the status of currently running and scheduled tasks. It is has a
set of virtual slots, which determine the number of tasks that it
may accept and process. DataNode acts as a HDFS DataNode
and manages local data storage of the slices allocated to each
worker node by the master node.

When the master node first receives a job, JobTracker
queries the DataNode in each worker node to determine which
node already has the necessary data stored locally and then
allocates a slot with the TaskTracker running in the given node.
If it does not find a node that already has the data, it allocate
the first empty slot it finds in any node. Usually, a file stored in
a HDFS volume is replicated to several worker nodes through
their respective DataNodes. When the TaskTracker receives
a new job (consisting of the MapReduce task to be run and
the description of the necessary dataset), it spawns a child
process to execute it and then reports back on its status to the
JobTracker. The structure and processes of a MapReduce job
are represented in Figure 6.

IV. THE DISTRIBUTED IDS ARCHITECTURE

In this section, we introduce the proposed architecture for
scalable distributed intrusion detection systems, discussing in
the deatils each of its components.

The goal of this distributed intrusion detection system
architecture is two solve two main issues: comprehensive data
collection accross different network areas and scalable efficient
processing and analysis of the resulting dataset. In order to
achieve this, we combine previous distributed data collection
approaches with cloud computing techniques, achieving a
hybrid system where data collection is performed by software

Fig. 6. The structure of a MapReduce job

sensor agents installed in different host in the network and data
processing is carried out at a MapReduce cloud that aggregates
and analyses collected data. The cloud based attack detection
application is able to correlate diverse collected data (such as
traffic captures and logs) in order to detect complex attacks
and it may easily scale through the addition of more worker
nodes, being easily adaptable to different networks.

The proposed distributed IDS architecture is composed by
mainly three parts: the sensor agents, the cloud based data
storage and processing infrastructure and a web visualization
interface. In this architecture, information flows from the data
collection sensor agents installed in different network areas
to the central MapReduce cloud. Differently from other ap-
proaches, instead of being processed by a centralized system,
the collected data is then analysed by a cloud application
that leverages the resources of the worker nodes in the cloud,
scaling transparently as network traffic (and consequently the
analysis dataset) grows. The information obtained from the
analysis dataset (i.e. intrusion alerts) is then conveniently
displayed in a web based interface for visualization. The
proposed architecture is depicted in Figure 7.

This architecture provides an efficient topology for dis-
tributed data collection and storage, tasks that are of great im-
portance in handling large quantities of distributed data (such
as logs in the distributed intrusion detection system). It builds
on the fact that the Hadoop implementation of the MapReduce
framework provides both a distributed filesystem for data
storage and a data processing environment. The logs and traffic
collected from the different systems spread in the network are
aggregated in distributed file system volumes, which may be
subsequently accessed by MapReduce applications running on
the cloud infrastructure. Notice that this increases the storage
capacity of the data processing environment while decreasing
data access times, since the data is already in the cluster.

A. Sensor Agents

In order to thoroughly capture network activity in different
network segments, our architecture employs several sensor
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Fig. 7. The Distributed IDS Architecture

agents are placed in different network regions [23]. Applying
this distributed collection strategy, the DIDS is also able to
correlate activities in different network portions to obtain
general overview of network status. The sensor agents are
multi-platform applications installed in heterogeneous network
nodes located in isolated regions. These agents collect relevant
information captured and generated by their host nodes and
send it to the master node in the cloud environment, which
centralizes data collection. The sensors mainly collect traffic
captures and regular IDS logs generated in host systems
(possibly by local HIDS solutions). This procedure delivers
consistent traffic capture data which thoroughly represents
network activity as it contains packets captured in different
isolated network regions.

The sensor agents also collect audit data and security logs
generated by the host operating system (e.g. authentication
logs). Correlating this information with traffic captures and
regular IDS logs, the intrusion detection model and the anal-
ysis system placed in the cloud infrastructure identify and
confirm attacks that generate patterns in different layers. As
an example, a doorknock attack, where a malicious user tries
to login to several nodes using common combinations of
usernames and passwords, generates a typical traffic pattern
and also causes the security log files to register the failed
login attempts. The distributed IDS would then by able to
detect such an attack by correlating traffic capture data with
security logs collected from the affected nodes.

In order to guarantee the authenticity and confidentiality of
the data exchanged between the sensor agents and the master
node in the cloud, standard cryptographic techniques can be
applied for establishing secure authenticated channels. The
simplest alternative is to deploy a Public Key Infrastructure
(PKI) across the monitored network and use digital certificates
to sign and encrypt the data exchanged by sensor agents.
However, if a sensor agent is compromised, it is necessary
to revogate its certificate, which is still an open problem.
Nevertheless, notice that certificate revocation would not have
a great effect if single sensor agents are compromised, since
the central DIDS application correlates information from many
different sensors and the injection of false data in only one of
the sensors would not have a significant impact in the final

analysis.

B. Cloud Infrastructure

The cloud infrastructure is a simply a Hadoop environment
that aggregate data received from the individual sensors and
process it through attack detection algorithms. This is an
heterogeneous environment composed of different computers
with different resources and architectures. In theory, any
platform capable of running a Hadoop MapReduce framework
implementation can be used in the cloud infrastructure to
process IDS data. Since the only requirement for running
Hadoop is an up to date Java Virtual Machine (JVM), this
flexibility makes it viable to use legacy equipment for IDS
log analysis, reducing the costs of implementing such system.

The hosts in the MapReduce cloud are also part of a
distributed filesystem where the data collected by the sensor
agents is stored during analysis. The cloud’s master node
receives the data and stores it in the distributed filesystem
where it is accessed and modified in the analysis process.
The distributed filesystem seamlessly scales together with the
cloud infrastructure providing enough storage space to large
quantities of logs without requiring special storage devices.
Moreover, filesystem access speed is improved by distributing
data among the cloud nodes.

Several intrusion detection algorithms, data analysis, sensor
fusion and event correlation models are intended to run as
MapReduce jobs on the cloud infrastructure, which provides
scalable performance for increasingly large volumes of data
processing tasks. Information such as network flows (obtain-
able from packet capture files) is efficiently processed in a
MapReduce grid, yielding fast results even in settings with
sheer quantities of logs [5]. This system can also be used
to calculate statistical data regarding network activities and
monitored nodes security.

C. Web Visualization Interface

After the collected data is processed in the cloud, the
intrusion detection models issue alerts regarding detected
ongoing malicious activities. It is also possible to extract
statistical information from the collected data, yielding results
which require different visualization methods. However, the
mapReduce framework provides text only files containing the
desired results.

In order to provide efficient and adequate visualization of
the results obtained in the data analysis process, the result
files generated are parsed and relevant information is shown
in a web visualization interface. This enables the system to
flexibly handle different intrusion detection model outputs
and statistical data by simply adding a new module to the
visualization interface.

V. EXPERIMENTAL RESULTS

A series of experimental simulations were performed in
order to prove the feasibility of the proposed distributed
intrusion detection system. In this section we discuss the
results obtained, which attest the feasibility of our approach.
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In this experiments we analyse the data storage and pro-
cessing performance of a Hadoop environment deployed on a
typical cluster. The cloud infrastructure used for the simulation
was composed by one master node and five slave nodes. Each
node has a Intel Core 2 Duo 2.66 GHz cpu, 4 GB DDR667
RAM, 300 GB hard disk and a 10/100 Mpbs ethernet network
interface. The nodes are connected to a dedicated 10/100
ethernet switch and the Hadoop framework was deployed on
machines running a standard setup of CentOS as underlying
operating system.

The Hadoop implementation of the MapReduce framework
was used together the HDFS distributed filesystem. In order
to illustrate the performance of HDFS and MapReduce, two
important operations for the proposed DIDS were simulated,
namely filesystem input/output and data sorting. Those opera-
tions were implemented in the Pig scripting language, which is
part of the Hadoop project and automatically creates the nec-
essary map and reduce functions upon receiving a description
of the desired operations, thus decreasing development time
and complexity.

The first experiment consists in creating new files of varying
sizes containing random data on the master node and then
moving them to a HDFS volume in order to measure filesystem
throughput and performance. Figure 8 shows the time taken
to write a file varying from 1 Megabytes to 250 Megabytes
to the distributed filesystem. These file sizes were chosen as
to represent the quantity of data collected by sensor during
one minute. Notice that collecting 250 Megabytes per minute
during one day would yield approximately 351 Gigabytes,
which is certainly more than many networks generate in terms
of logs and IDS data. This experiment shows that write times
increase linearly with the file sizes. It is clear that the system
would scale to a large quantity of collected data. Moreover,
these times can be significantly lowered if a higher throughput
network fabric (such as 10 Gbps Ethernet) is deployed or if
more nodes are added to the cluster.
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Fig. 8. File system write performance: File size x Time

The second experiment consists in sorting random data
varying from 1 megabyte to 250 megabytes using the Quick-
Sort algorithm. In this experiment the same files created in

the first experiment are used, which is interesting since the
entropy of random files is considerably higher than the entropy
of real network logs and traffic, representing a worst case
for sorting or pattern matching algorithms. In the tested file
size range the sorting times oscillated between 33.4 and 35.6
seconds due to natural oscillations in network performance.
The sorting time is essentially the same for data in this
range due to the synchronization and communication overhead
between the cloud nodes. It is important to notice that there
is a constant overhead, which is naturally expected since the
nodes that compose the volume have to receive and process
synchronization messages before the actual data transfers. This
overhead should be accounted for in the design of the DIDS.
Even in the case of single megabyte data sorting it is necessary
to prepare the nodes and the distributed filesystem to run the
required sorting task, which takes a constant amount of time.
The time elapsed in the sorting task itself is insignificant when
compared to the synchronization overhead, showing that this
solution nicely scales to sheer volumes of data.
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Fig. 9. Data processing performance

Both of the experiments conducted with the cloud infras-
tructure intended as the central component of the proposed
architecture show that it is feasible to store and process
massive quantities of data in a Hadoop environment. Both the
file creation and transfer process and the sorting algorithm can
be efficiently performed on such data volumes on the cloud
infrastructure. Those operations are the core of the proposed
DIDS, since it constantly collects and classifies information.
Hence, these experiments show that the proposed distributed
intrusion detection system architecture is feasible for large
network environments.

VI. CONCLUSION

Current intrusion detection systems do not properly handle
the sheer amount of traffic and data transmitted in large scale
networks. Furthermore, the heterogeneous and decentralized
nature of current networks causes certain network regions to
be isolated from the network’s core, where most of the data
used in current NIDSs is captured. We propose an efficient
and scalable distributed intrusion detection system based on
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the MapReduce framework which is capable of handling large
volumes of logs and seamlessly scale to handle network
growth. Moreover, the proposed DIDS captures data and
logs in different regions of the network, efficiently detecting
internal and external attacks which occur in isolated network
regions. While previous research provide results which attest
the feasibility and efficiency of analysing NIDS logs, we
present simulation results show that data collection and analy-
sis may be performed in time intervals small enough to provide
almost real-time results. As a future work further investigation
on intrusion detection algorithms based on the MapReduce
framework is to be conducted. Also, a full implementation of
sensor agents and MapReduce based analysis algorithms is to
be developed and tested.
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