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Abstract— The mismatch of noise conditions between the
training and testing utterances is one of the reasons for the dra-
matic performance degradation experienced by automatic speech
recognition system when operating in real world conditions. The
Maximum a Posteriori Adaptation is one of the techniques used
to face this degradation. A problem with this method is the search
for good adaptation coefficients as they have to be found by a
scanning process. In this work, we provide an algorithm based
on parametric adjustment (using a logistic curve) that returns
good adaptation coefficients for this technique.

Index Terms— Automatic Speech Recognition, Maximum a
Posteriori Adaptation, Multi-Style Training, Parametric Adjust-
ment.

I. INTRODUCTION

It is widely known that ASR (Automatic Speech Recog-
nition) systems performance degrades when operating under
noisy conditions [1] and one reason for this fact is the mis-
match between the training and the testing acoustic conditions
[2].

There are several approaches that try to minimize the effects
of background disturbance even in unknown noisy conditions
[3], and they can be divided into three main classes:
• the first one is applied before acoustic modeling in

front-end signal preprocessing. PLPs or MFCCs helps
to minimize the effect of speaker variability. In front-
end signal processing, noise suppression methods such as
Subtraction Spectral (SS), Wiener filtering and Minimum
Mean Square Error (MMSE) estimation are effective to
reduce the intensity of noise in speech;

• the second one take into account methods that act in the
modeling phase. In this case, clean speech is used in
the training phase to ensure a high quality of the final
speech models. Then, these models can be transformed
according to the noise present during recognition task.
This category comprehends: techniques which combine
background noise with speech, i.e multi-condition mod-
els, or with acoustic models such as parallel model
combination (PMC);

• the last approach includes methods which use noisy
speech data to adapt acoustic models for a specific back-
ground condition by retraining the clean speech models
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or simply by some transformation as maximum likelihood
linear regression (MLLR) or MAP adaptation.

This work is based on [4] approach, that uses a multi-style
condition training [5] followed by a Maximum a Posteriori
(MAP) adaptation [6]. This method can be summarized as
follows:
• in the first stage (multi-style training), a HMM is trained

using utterances corrupted by several noise types avai-
lable on AURORA database [7] at SNRs of 15 dB and
20 dB (this choice of SNRs is based on experimental
results [4]). This stage provided a 6.89 % gain in WA
(word accuracy) for noisy utterances recognition when
compared with a system trained only with clean speech.

• in the second stage, a MAP adaptation was performed to
fine tune the system for the actual noise type and SNR
that is being experienced by the recognizer. An additional
1.74 % gain in WA was obtained, and thus, the overall
gain with these two techniques is 8.63 % over the baseline
system.

Although the MAP adaptation gives good results, its per-
formance depends on the correct choice of the so called
adaptation coefficients. To date, they have to be found by
a scanning process, which is a computacionally inefficient
process. Therefore, the main contribution of this work is a
method to allow the selection of good adaptation coefficient
values in O(1) time, avoiding the scanning process.

The next sections are structured as follows: in Section II, a
theoretical framework for the multi-style training and the MAP
adaptation is given. Section III presents the proposed method.
In Section IV, the experimental setup used for recognition tests
is demonstrated and Section V shows the test results. Finally,
Section VI brings the final conclusions of the present work.

II. SYSTEM MODEL.

This work evaluates the combination of multi-style training
and MAP estimation, techniques which are presented in the
next subsections, to overcome effects caused by different noise
types and levels.

A. Multi-Style Trainining

Hidden Markov Models are classifiers. In this sense, their
performance heavily rely on the information available in the
training stage. If it is desired that they work in several noise
conditions, with different channel distortions, reverberation,
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etc., it is necessary that the training utterances are collected in
such environments. Obviosly, the construction of a database
that reflects all situations of day to day is infeasible and im-
practical given the great variability of environmental adverse
conditions.

The multi-style or multi-condition training employs utte-
rances artificially corrupted by different noise type and levels
in the training stage in order to minimize the performance drop
of ASR systems operating in noisy environments [8].

Different approaches can be used in this method: the system
can be trained for a particular noise type and level according to
environmental condition, or with different levels of a specific
noise type, or even, with different noise types and levels. The
present work employs the last approach.

B. Maximum a Posteriori Adaptation

In the context of HMMs, the MAP approach consists in
the adaptation of the canonical model parameters (mixture
weight, mean and variance) using estimated statistics of the
background noise only. Usually, it leads to good word accuracy
because it provides the modeling of the uncertainty caused by
noisy environmental statistics [9].

A canonical model is a HMM generated in the training
phase using noisy or clean utterances of several speakers.
Then noise statistics from environment are used to adapt these
models. The hypothesized speech model is derived by adapting
the parameters of canonical model and a form of Bayesian
adaptation [6].

The adaptation equations for these parameters are described
as follows: given a noise sample and training vectors from
the hypothesized speech, X = x1, x2, ..., xT , the probabilistic
alignment of the noise into the canonical model is given by:

Pr(i|xt) =
ωipi(xt)∑M
j=1 ωjpj(xt)

(1)

where M is the number of Gaussian densities, ω is the mixture
weight and p is the probability density function.

Then, Pr(i|xt) and xt are used to determinate the noisy
statistical parameters weight (ni), mean (Ei(x)) and variance
(Ei(x2)), as described below:

ni =
T∑
t=1

Pr(i|xt) (2)

Ei(x) =
1

ni

T∑
t=1

Pr(i|xt)xt (3)

Ei(x
2) =

1

ni

T∑
t=1

Pr(i|xt)x2t (4)

Finally, these estimated statistics of background noise are
used to adapt the canonical models generating a new model.
The adaptation equations for these parameters are:

ω̂i = [αωi ni/T + (1− αωi )ωi] γ (5)

µ̂i = αmi Ei(x) + (1− αmi )µi (6)

σ̂2
i = ανiEi(x

2) + (1− ανi )(σ2
i + µ2

i )− µ2
i (7)

where:
• ωi, µi and σ2

i are the mixture weights, means and
variances of the multi-style trained system;

• ω̂i, µ̂i and σ̂2
i are the mixture weights, means and

variances after adaptation and
• ni, Ei(x) and Ei(x2) are the noise statistics.
The adaptation coefficients αωi , αmi and ανi can assume

values in the [0, 1] interval and control the balance between
old and new estimates for the weights, means and variances,
respectively.

It seems reasonable that a good choice of these parameters
depends on the noise type and its intensity, since higher values
favor the noise estimates whereas lower values tend to preserve
the original ones.

It is possible to employ different coefficient values to
adapt weights, means and variances. However, this approach
provides a small gain compared to use solely a single value
(αωi =αmi =ανi ) when adapting them [6]. Therefore, in this work,
a single adaptation coefficient for all parameter is used.

As mentioned before, the performance of this technique
depends on a good choice of this adaptation coefficient.
Unfortunately, the process reported in the literature to find
such optimal value is based on a scanning process: varying
the value of α in the (0, 1) range, the optimal value is the
one that leads to the best recognition performance. Clearly
this approach has a big computational cost, and in the next
section the method we devised to avoid such scanning process
is presented in details.

III. ALGORITHM TO FIND THE α COEFFICIENT

As aforementioned, the proposed method tries to find an α
value that leads to a performance improvement when compar-
ing to a non-adapted system, for the noise being experimented
by the recognition system in a given moment. In other words,
the goal is not to find an α that leads to the maximum
system performance but to provide a value that returns a gain
compared to the baseline.

The algorithm is outlied below:
• for each value of SNR, perform a grid search for the best

values of α in the (0,1) interval and record the ones that
lead to a performance improvement (in our experiments,
we used 0 dB, 5 dB, 10 dB, 15 dB and 20 dB).

• For a given SNR, there can be several values of α that
lead to a performance improvement, but we keep only
one. After several tests, we decided to choose a weighted
average, given by:

α′ =

∑
i

WA(i)× α(i)∑
i

WA(i)
(8)

where WA(i) is the word accuracy obtained by using the
value α(i), and α′ is the chosen value for the α parameter.
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Therefore, after this step, there is a single α′ value for
each value of SNR.

• By looking at the curves generated by several tests, we
observed that they resembled the format of a logistic
curve. Thus, as a final step, a logistic curve with three
free parameters was adjusted to the experimental points
[10].

f(x) =
1

1 + eb−ax
− c (9)

where x is the noise level and f(x) is the adaptation
coefficient. The configuration parameters a, b and c can
be obtained by curve fitting techniques. These parameters
can be interpreted as follows:

– a parameter determines the slope of the logistic
curve. The smaller its value, the steeper is the curve;

– b parameter controls the horizontal offset. If its value
decreases, the curve is shifted to the right. Otherwise,
it is shifted to left and

– c parameter is the offset, allowing the vertical ad-
justment. If its value increases, the curve is moved
down. Otherwise, it is shifted up.

Figures 1, 2 and 3 show the behavior of a, b and c
parameters, respectively.
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Fig. 1. Example of different values for ‘a’ parameter

This is an important step because it allows the choice of α
values for SNRs different from the ones used to generate the
curve.

In the next section the experimental setup used in the
recognition tests is presented.

IV. EXPERIMENTAL SETUP

In this section, the database and speech recognition engine
ised for the experiments are described.

A. Database

Experiments were performed using a 40 speakers (20 male
and 20 female) clean speech database [11]. Each speaker
recorded 40 phonetically balanced utterances in Brazilian
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Fig. 2. Example of different values for ‘b’ parameter
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Fig. 3. Example of different values for ‘c’ parameter

Portuguese which were drawn from [12]. The corpus has 1600
sentences comprising 694 different words and it was divided
in two groups: training corpus (1200 utterances) and testing
corpus (400 utterances).

The recordings were performed in a low noise environment
at 11,025 kHz sample rate and 16-bit coded. The sampling
frequency was lowered to 8 kHz to make them compatible
with the AURORA database.

The original database was artificially corrupted by noises
(airport, babble, car, exhibition, restaurant, street, subway and
train) from the Aurora Project database [7]. For the training
material, for each clean sentence, 2 new versions were created
combining each noise type at levels 15 and 20 dB as proposed
by [4]. For each clean utterance of testing corpus, 5 new
versions were created adding each noise type at levels 0, 5, 10,
15 and 20 dB. Therefore, training and testing database have
now 19200 and 16000 corrupted utterances, respectively.

B. Speech recognition engine

To test our ideas, a continuous density HMM based speech
recognition engine developed by [11] was used. It uses context
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independent phones as fundamental units, with each of them
modeled as a 3 state Markov chain, as shown in Figure 4 and
the One Pass search algorithm [13]. A mixture of 10 multi-
dimensional Gaussian distributions with diagonal covariance
matrix was used in each state.

Fig. 4. Markov chain for each phone model

As acoustic parameters, 12 mel-cepstral coefficients to-
gether with their first and second derivatives were used, lead-
ing to feature vectors of dimension 36. Finally, to improve the
system performance, a bigram language model was applied.

V. EXPERIMENTAL RESULTS

To verify that the proposed method leads to a performance
improvement over the baseline system, the following tests
were performed:

A. Baseline

The baseline performance is obtained from an ASR system
trained using the multi-style approach. For training, all noise
types available in the AURORA database at SNR levels of 15
dB and 20 dB were used.

The results of the tests with this system are shwon in the
column named “Reference WA” (second column) of Tables I
to VIII.

TABLE I
AIRPORT TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 3.2 7.3 0.6500 0.3387 6.3
5 25.4 32.1 0.4500 0.2779 31.1
10 62.9 66.2 0.1500 0.1950 65.6
15 78.0 77.8 0.0100 − −
20 78.0 77.8 0.0100 − −

TABLE II
BABBLE TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 4.6 5.9 0.1500 0.2172 5.8
5 32.2 37.4 0.2000 0.2139 37.1
10 66.3 66.7 0.1500 0.1500 66.2
15 77.1 76.9 0.0100 − −
20 77.1 76.9 0.0100 − −

TABLE III
CAR TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 5.3 7.1 0.3000 0.2167 6.0
5 31.7 37.3 0.3500 0.2195 36.3

10 65.8 67.7 0.1500 0.1017 67.5
15 76.5 76.6 0.0400 0.0350 76.3
20 76.5 76.6 0.0400 0.0350 76.3

TABLE IV
EXHIBITION TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 0.2 1.8 0.4000 0.2310 1.0
5 16.4 23.5 0.0900 0.2283 23.1

10 58.2 58.7 0.1500 0.1267 58.0
15 75.5 75.5 0.0200 − −
20 75.5 75.5 0.0200 − −

TABLE V
RESTAURANT TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 13.8 15.4 0.2500 0.1751 14.8
5 4.4 9.1 0.3500 0.2371 8.5

10 35.5 41.6 0.3500 0.1976 41.1
15 69.2 69.7 0.0300 0.0325 69.7
20 69.2 69.7 0.0300 0.0325 69.7

TABLE VI
STREET TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 15.6 18.6 0.2000 0.1043 18.4
5 56.1 57.1 0.0700 0.0600 56.3

10 73.6 73.6 0.0200 − −
15 75.8 77.1 0.0200 0.0250 76.8
20 75.8 77.1 0.0200 0.0250 76.8

TABLE VII
SUBWAY TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 −0.3 3.4 0.4000 0.3186 2.7
5 18.4 25.8 0.3000 0.2594 25.6

10 57.9 61.8 0.0500 0.1193 61.7
15 73.0 73.4 0.0800 0.0650 72.9
20 73.0 73.4 0.0800 0.0650 72.9
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TABLE VIII
TRAIN TEST RESULTS.

SNR Reference Maximum α for weighted WA for
(dB) WA WA maximum α weighted

(%) (%) WA α (%)
0 7.6 12.6 0.4500 0.3174 12.1
5 34.0 40.7 0.4500 0.2398 38.8
10 69.0 70.0 0.0400 0.0749 69.9
15 78.1 78.1 0.0100 − −
20 78.1 78.1 0.0100 − −

B. Results with adaptation using optimum α values

To evaluate the maximum improvement in the recognition
performance using multi-condition training and MAP adap-
tation combined together, the HMM obtained in the baseline
system was adapted for each noise type, generating new 8
models.

In this test, the value of the adaptation parameter α was
chosen by a scanning process, with the selection criterion
being the highest WA.

The recognition results and the chosen value for α are
shown in the third (“Maximum WA”) and fourth (“α for
maximum WA”) columns of Tables I to VIII.

It can be seen that the adition of the adaptation stage
provides an improvement of the recognition performance when
comparing with the results obtained by the baseline system,
for almost all noise types and levels. In a few situation, this
technique led to no gain or a little drop in the WA.

C. Results with adaptation using α values computed by the
proposed method

To avoid the scanning process, the adaptation coefficients α
were calculated using the algortihm shown in Section III. The
coefficient values for each noise type are shown in Table IX,
and the resulting curves are shown in Figures 5 to Fig 8.

With this settings, a new bunch of tests was performed, and
the resulting α values, together with the recognition results
can be viewed in the two last columns (“Weighted α”) and
(“WA for weighted α”) of Tables I to VIII.

These results show that, as expected, this technique provides
α values that lead to a performance improvement, but not
to the best possible improvement. Also, for some SNRs it
doesn’t exist a weighted α value that lead to a performance
improvement. For these cases, MAP adaptation introduced a
little performance drop or did not provide gain comparing to
the baseline, and therefore these results are not shown in the
Tables.

D. Extending the results for other SNRs

A final question to be answered is: are the α values obtained
by this method adequate for other SNRs that are different from
the ones used to obtain the logistic curve?

To validate the proposed logistic functions, recognition tests
were performed for different preselected SNR levels using the
canonical model adapted which their correspondent adaptation
factors from respective curves. Experimental results showed
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Fig. 5. Logistic curve for recognition using airport noise
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Fig. 6. Logistic curve for recognition using babble noise
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Fig. 7. Logistic curve for recognition using car noise
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Fig. 8. Logistic curve for recognition using exhibition noise
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Fig. 9. Logistic curve for recognition using restaurant noise
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Fig. 10. Logistic curve for recognition using street noise

TABLE IX
COEFFICIENTS FOR LOGISTIC CURVE.

Noise a b c
airport −0.104175 −0.810155 0.186922
babble −0.319246 1.338508 −0.009345

car −0.442008 1.445377 −0.025966
exhibition −0.124371 1.049212 0.028005
restaurant −0.148612 1.701653 −0.020750

street −1.264809 2.320370 −0.014900
subway −0.131225 1.000045 −0.049691

train −0.299248 0.882365 0.000910
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Fig. 11. Logistic curve for recognition using subway noise
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Fig. 12. Logistic curve for recognition using train noise

that proposed algorithm led to a good adaptation coefficient
value improving the system performance as can be observed
in Tables X, XI and XII.

VI. CONCLUSIONS

In this paper we showed that a combination of multi-
style training together with the MAP adaptation leads to a
performance improvement of an ASR system operating in
noisy conditions.
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TABLE X
WORD ACCURACY FROM LOGISTIC CURVE FOR SNR = 2 dB.

Noise α from Reference WA using ∆WA (%)
Logistic WA (%) Logistic
Curve Curve (%)

airport 0.4591 7.9 12.8 4.9
babble 0.1310 10.5 15.4 4.9

car 0.1147 12.5 15.9 3.4
exhibition 0.1865 2.4 6.9 4.5
restaurant 0.1401 6.1 7.5 1.4

street 0.0227 30.3 31.5 1.2
subway 0.2702 2.3 9.0 6.7

train 0.1844 12.3 15.6 3.3

TABLE XI
WORD ACCURACY FROM LOGISTIC CURVE FOR SNR = 7 dB.

Noise α from Reference WA using ∆WA (%)
Logistic WA (%) Logistic
Curve Curve (%)

airport 0.3333 39.8 47.3 7.5
babble 0.0366 48.7 50.3 1.6

car 0.0365 49.8 50.8 1.0
exhibition 0.0999 31.3 38.4 7.1
restaurant 0.0813 11.4 15.5 4.1

street 0.0149 65.9 65.9 0.0
subway 0.1777 33.9 40.8 6.9

train 0.0476 51.6 53.4 1.8

TABLE XII
WORD ACCURACY FROM LOGISTIC CURVE FOR SNR = 12 dB.

Noise α from Reference WA using ∆WA (%)
Logistic WA (%) Logistic
Curve Curve (%)

airport 0.2048 71.7 72.4 0.7
babble 0.0150 73.7 74.2 0.5

car 0.0271 73.9 73.9 0.0
exhibition 0.0450 69.1 69.6 0.5
restaurant 0.0505 53.2 54.9 1.7

street 0.0149 76.0 76.0 0.0
subway 0.1205 66.8 67.3 0.5

train 0.0104 74.6 74.6 0.0

After the multi-style training, the system was presented to
different noise types and levels. However, it is very difficult
that, in real operating conditions, the same noise type and
level will be present in the utterance to be recognized. The
MAP adaptation stage is responsible to further tune the system
models to the actual noise type and level of the utterance being
processed. However, the adaptation stage needs the value of
the adaptation coefficient α, which is usually calculated by a
costly scanning procedure.

The main contributions of this work are: i) the modelling
of the relationship between the adaptation coefficient α versus
the noise type and level, as a logistic curve, and ii) using this
information, establishing a method to calculate the adaptation
coefficient α for a given noise type and level in O(1) time.

The proposed strategy finds an α value for a given type
and noise level that ensures an improvement when compared
to the baseline system. Although it does not give the α value
that leads to the best possible performance, in practice it gives

an improvement of approximately 3% on system performance
compared to the reference value (multi-style trained system).
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