Results

Cooperative Spectrum Sensing in TV White Space Scenarios with Fading and Impulsive Noise

André A. dos Anjos - UFU - Brazil

Diogo C. Arvelos - UFU - Brazil

Luís M. A. Borges - UFU - Brazil

Yonghui Li - USYD - Australia

Rausley A. A. Souza - USYD - Australia - INATEL - Brazil

Gold Coast, Australia, December 2024

Rausley A. A. de Souza

Cooperative Spectrum Sensing in TV White Space Scenarios with Fading and Impulsive Noise

- Currently, there is a scenario of spectral scarcity, mainly below 1GHz, which comes from spectrum limitation but also due to underutilization.
- In the UHF and VHF TV bands, the underutilization is more evident. Idle spaces in this frequency range are called TV White Spaces (TVWS).
- Regulatory bodies such as the FCC (USA) and ANATEL (Brazil) have already begun regulating TVWS for secondary use.
- To enable the opportunistic use of TVWS, cognitive radios (CRs) with spectrum sensing (SS) functionality will be required.

troduction			
ntrodu	ctio	n	

Results

- Non-Cooperative Spectrum Sensing (Non-CSS): Each cognitive radio (CR) independently monitors the spectrum, potentially leading to unreliable decisions.
- Cooperative Spectrum Sensing (CSS): Multiple CRs gather information about a channel and send it to a fusion center (FC), enabling a more reliable global decision on channel occupancy.
- Research Gap: Despite extensive studies, there is a lack of works addressing realistic challenges and practical applications of SS techniques.

Main objective

Evaluate the performance of CSS in TVWS under realistic conditions, including AWGN, multipath fading, and impulsive noise considering OFDM signals from the ISDB-T/TB standard as the primary user (PU) and using two fusion rules in CSS: sample fusion (SF) and decision fusion (DF).

Introduction System Model Results Conclusion System Model Occord Occord

The model consists of two hypotheses:

$$y(t) = \begin{cases} w(t) + r(t), & \text{if } \mathcal{H}_0 \\ x(t)h(t) + w(t) + r(t), & \text{if } \mathcal{H}_1 \end{cases},$$
(1)

- y(t) is the received signal.
- w(t) thermal noise at receiver.
- r(t) impulsive noise at receiver.
- x(t) PU transmitted signal.
- h(t) channel gain.

Decision on spectral occupancy

- A decision variable, T, is generated by processing y(t).
- if $T > \lambda$, decides for H_1 , otherwise for H_0 .

- Energy detection is one of the most widely used techniques owing to its low implementation complexity.
- The decision statistic (variable), T, is calculated according to

$$T = \sum_{i=1}^{n} |y(i)|^2.$$
 (2)

• Considering a sufficiently large number of samples, n, and using the central limit theorem, $T = \mathcal{N}(n\sigma_{w}^{2}, n\sigma_{w}^{4})$ under hypothesis H_{0} and $T = \mathcal{N}(n(\sigma_{s}^{2} + \sigma_{w}^{2}), n(\sigma_{s}^{2} + \sigma_{w}^{2})^{2})$ under hypothesis H_{1} .

$$P_{\rm fa} = Q\left(\frac{\lambda - n\sigma_{\rm w}^2}{\sqrt{n\sigma_{\rm w}^4}}\right), \qquad \qquad P_{\rm d} = Q\left(\frac{\lambda - n(\sigma_{\rm s}^2 + \sigma_{\rm w}^2)}{\sqrt{n(\sigma_{\rm s}^2 + \sigma_{\rm w}^2)^2}}\right), \qquad \qquad \lambda = \sigma_{\rm w}^2(Q^{-1}(P_{\rm fa})\sqrt{n} + n).$$

System Model CSS Approaches (*m* CRs)

Results

Decision Fusion (DF)

- Each CR sends its individual decision (1 bit) about spectrum occupancy to the FC.
- The FC applies the majority rule: If most CRs indicate the spectrum is occupied \implies final decision is occupied. -Otherwise, it is considered free.
- Advantage: Low complexity, requiring only the transmission of 1 bit per CR.
- Balanced Approach: Mai rule reduces false positives compared to the OR rule while being less strict than the AND rule, allowing a higher probability of detection.

Sample Fusion (SF)

- Each of the m CRs sends its n collected samples to the FC.
- The FC computes a joint decision statistic using all $m \times n$ samples:

$$T_{\mathsf{EDSF}} = \sum_{l=1}^m \sum_{i=1}^n |y_l(i)|^2$$

- Decision: $T_{\text{EDSE}} > \lambda \implies$ spectrum is occupied.
- Disadvantage: High implementation complexity due to the need for transmitting samples at a high rate.

Introduction

Impulsive Noise Modeling

 IN can significantly degrade telecommunications and spectrum sensing systems.

System Model

- It introduces high-amplitude disturbances caused by sources like electrical switching, lightning, and engine ignitions.
- The number of IN pulses in a sensing period follows a **Poisson distribution**.
- The interval between pulses is modeled as an exponential distribution with a mean value of β.

Results

7/16

Introduction

Rausley A. A. de Souza

System Model

Results

Impulsive Noise Modeling

- The IN pulse amplitude (Z) follows a log-normal distribution (amplitude A [dBµV] and standard deviation B [dB]).
- The IN phase is modeled as a uniform random variable $\theta \in (0, 2\pi]$.

- Parameters for adapting IN to CSS:
 - K: Ratio of IN power to thermal noise power ($K = \sigma_{\rm r}^2/\sigma_{\rm w}^2$)
 - *P*_{IN}: Probability of IN occurrence (Bernoulli RV).
 - P_{CR}: Percentage of CRs affected (Binomial RV parameters *m* and P_{CR}).

Results

Conclusion

Primary User Signal in TVWS

• The PU signal considered in the SS simulations is OFDM fully compliant with the transmission signal of the ISDB-T_B standard.

 Table I

 OFDM ISDB-T_B System Transmission Parameters

Parameter	Value	
Total number of carriers	8192 (Mode 3)	
Number of active carriers	5617	
Guard interval	1/16	
Number of segments Layer A	13	
Data carriers modulation Layer A	64-QAM	
Encoding rate of layer A	7/8	
Pilot carriers and TMCC modulation	BPSK/DBPSK	
OFDM symbol duration	1.26 ms	
Subcarrier spacing	0.992 kHz	
Pilot spacing	11.9 kHz	
IFFT clock	512/63 MHz	
Bandwidth	5.572 MHz	

$$s(t) = \sum_{s=0}^{\infty} \sum_{k=0}^{K-1} c_{s,k} \psi(s,k,t)$$
 (3)

Results

Conclusion

Numerical Results (varying SNR)

- MATLAB software, taking into account 20000 Monte Carlo events
- ROC curves deviate from the optimal point, and the AUC metric decreases in the presence of IN.
- The SF method outperforms DF in all evaluated cases.
- The performance gap between SF and DF is less pronounced with IN.

Results

Conclusion

Numerical Results (varying m)

- The cooperative approach mitigates IN compared to a non-CSS system (m = 1) for both SF and DF methods.
- Performance improvements diminish as the number of CRs increases, especially at low *P*_{fa} values.

- *K*: Ratio of IN power to thermal noise power $(K = \sigma_r^2 / \sigma_w^2)$
- Increasing *K* reduces SS performance due to higher IN, leading to more false alarms.
- Without IN (*K* = 0), SF (AUC = 0.916) outperforms DF (AUC = 0.838)
- At high *K* (*K* = 2), DF (AUC = 0.714) surpasses SF (AUC = 0.706) despite its simpler implementation.

• Without IN ($P_{IN} = 0$), SF outperforms DF, but DF becomes superior as P_{IN} increases.

Results 00000

- Intense IN causes SE BOC curves to exhibit a sharp vertical drop near $P_{fa} = P_{IN}$, indicating operational infeasibility.
- DF shows smoother degradation under high IN, outperforming SF for $P_{\rm IN} = 0.4$ (AUC = 0.693 vs. AUC = 0.673).

Conclusion

Results

Numerical Results (varying *P*_{CR})

- In scenarios with $P_{CR} \neq 0$, DF outperforms SF when fewer CRs are affected by IN, e.g., for $P_{CR} = 0.3$, DF achieves AUC = 0.796 compared to SF's AUC = 0.751.
- DF is more robust to high-intensity IN due to majority decision-making, while SF is compromised as all samples are used in the final decision.

- This study analyzed CSS in TVWS scenarios using the ISDB-T_B signal under realistic disturbances, including Rayleigh fading, thermal noise, and IN, comparing SF and DF cooperation methods.
- The analyses highlighted the negative impact of IN on SS performance and showed diminishing performance gains as the number of CRs increases.
- DF was found to outperform SF in scenarios with high IN power intensity but a low percentage of affected CRs, despite its lower implementation complexity.
- These findings provide critical insights for optimizing SS strategies, improving the robustness and reliability of CSS in TVWS environments.

Thank you!

This work was partially supported by Minas Gerais Research Foundation (FAPEMIG) (RED-00194-23), under Minas Gerais Research Network in 5G and 6G project, by CNPg (Grant References 311470/2021-1 and 403827/2021-3), by the projects XGM-AFCCT-2024-2-5-1, XGM-FCRH-2024-2-1-1, and XGM-AFCCT-2024-9-1-1 supported by xGMobile - EMBRAPII-Inatel Competence Center on 5G and 6G Networks, with financial resources from the PPI IoT/Manufatura 4.0 from MCTI grant number 052/2023, signed with EMBRAPII, by RNP, with resources from MCTIC, Grant No. 01245.020548/2021-07, under the Brazil 6G project of the Radiocommunication Reference Center (Centro de Referência em Radiocomunicações - CRR) of the National Institute of Telecommunications (Instituto Nacional de Telecomunicacões - Inatel), Brazil, and by Fapemig (PPE-00124-23, APQ-04523-23, APQ-05305-23 and APQ-03162-24.