Investigating the Effects of Intentional Interference on Conventional and Spread Spectrum Systems

Andre A. dos Anjos - UFU - Brazil ´ Murilo P. Reis - INATEL - Brazil Rausley A. A. Souza - INATEL - Brazil

Gold Coast, Australia, December 2024

Rausley A. A. Souza [Investigating the Effects of Intentional Interference on Conventional and Spread Spectrum Systems](#page-13-0) 1/14

- Unmanned Aerial Vehicles (UAVs), also known as drones, have become more accessible due to technological advancements.
- However, concerns about the malicious use of UAVs have grown.
- Some events highlight the need for oversight and technological solutions to mitigate risks associated with UAVs.
- Studies focus on developing methods to block UAV signals, ensuring secure and controlled applications.

- Spread Spectrum (SS) techniques have gained attention for enhancing the security of UAV communications, especially against interference.
- Recent research explores jamming techniques with applications in UAVs, IoT, and secure communication networks.
- New tests on digital communication systems and reception scenarios are needed to understand available jammers better and identify the most effective ones.

Main objective

Evaluate the performance of DSSS and conventional BPSK systems under jamming techniques: single-tone, multi-tone, narrow-band noise, tone pulse, narrowband pulse, and swept interference. The analysis includes BER performance under varying jammer-to-signal ratio (JSR) conditions.

RF Interference:

- Intrusive signal in the spectrum where communication occurs.
- Affects the **signal-to-interference-plus-noise ratio (SINR)**.
- Reduced SINR decreases communication quality.

Main Types of Jamming

- Noise Jamming
- **•** Tone Jamming
- Swept Jamming
- **•** Pulse Jamming

Noise Jamming

- Introduces noisy signals into the target channel.
- Types:
	- **Broad-Band Noise (BBN): Covers entire spectrum, low power spectral density.**
	- **Narrow-Band Noise (NBN)**: Focused on one channel, more power-efficient.
	- Partial-Band Noise (PBN): Intermediate between BBN and NBN.

Tone Jamming

- Uses continuous sinusoidal wave signals.
- Types:
	- **Single-Tone**: Concentrates power on a single frequency.
	- **Multi-Tone**: Divides power among multiple tones, increasing the probability of success.

Swept Jamming

- Narrow-band or tonal signal that sweeps across the spectrum over time.
- Allows interference to cover a wide frequency range.

Pulse Jamming

- Interfering signal is pulsed at periodic intervals.
- Shorter activity time \rightarrow higher instantaneous interfering power.
- Effective with lower average power compared to other mentioned techniques.

[Introduction](#page-1-0) [Intention Interference](#page-3-0) [Simulations](#page-6-0) [Results](#page-10-0) [Conclusion](#page-12-0) Simulation Overview

Objective: Evaluate the effectiveness of interference techniques in compromising conventional and SS communications.

Implementation:

- **Simulation environment: MATLAB[®]**
- Systems: BPSK and BPSK DSSS
- Jamming techniques: Single-tone, Multi-tone, Narrowband Noise (NBN), Tone pulse, NBN pulse, and Frequency-swept jamming.

Communication System Parameters

Common parameters:

- Bit rate: $R_b = 2.5$ Mbps
- Carrier frequency:
	- $f_c = 2450 \text{ MHz}$

DSSS-specific parameters:

- Chip rate: $R_c = 25$ Mchips/s
- PN sequence length: 15 chips
- Processing gain: $PG_{dB} = 10 dB$

[Introduction](#page-1-0) [Intention Interference](#page-3-0) [Simulations](#page-6-0) [Results](#page-10-0) [Conclusion](#page-12-0) Jammer Simulation

Single-tone Jamming:

- Generated by a single cosinusoidal signal.
- **O** Target frequency: $f_c = 2450$ MHz.
- **•** High impact on BPSK due to concentrated interference on the signal band.

Multi-tone Jamming:

- **O** Central tone: $f_c = 2450$ MHz.
- \bullet Side tones: $f_c \pm 1.25$ MHz ($\pm R_b/2$), (2448*.*75 MHz and 2451*.*25 MHz).
- **O** Increased disruption for DSSS.

NBN Jammer:

- NBN signal is generated from AWGN filtered through a 35th-order IIR low-pass filter.
- Cutoff frequency: 0.5 MHz (20% of the bit rate).
- Baseband samples are translated to the \bullet center frequency $f_c = 2450$ MHz.

Jammer Simulation

Tonal Pulse Jammer:

- **O** Interfering signal active for only a fraction of the simulation time.
- Results in higher amplitude than single-tone jamming due to concentrated bursts.
- **O** Jammer is active for 10% of the total simulation time.

NBN Pulse Jamming:

- The interfering vector signal is initially generated as a conventional NBN signal.
- **•** The NBN signal is then limited to a specific time range, similar to tone pulse jamming.
- \bullet Active only for 10% of the total simulation time, creating concentrated disruption.
- \bullet Intermittent interference, offering brief moments of high impact while giving the system time to recover.

Swept Jammer:

- **•** The jammer uses a single tone at any given time during the transmission.
- At the start of the transmission, the interference is set to 2448 MHz.
- **•** The interference frequency increases over time, eventually shifting to 2452 MHz.
- The considered swept time for this technique is 40 ms.

Simulation Setup

- \bullet *J/P* varied from 0 to 30 dB; AWGN channel with $E_b/N_0 = 20$ dB.
- **Performance Metric:** BER estimated using 10⁶ transmitted bits.

- **O** Single-Tone Jamming: Most effective, simple to implement.
- **Multi-Tone Jamming:** Distributed power \bullet across tones, less effective for *J/P <* 6 dB.
- **NBN Jamming:** Moderate performance (power around *fc*).
- **Swept Jamming:** The effectiveness increases gradually with *J/P*.
- \bullet **Pulsed Techniques:** Limited disruption due to intermittent activity.

Key Observation: DSSS exhibits rightward and downward BER shifts, showcasing robustness.

- Pulsed jammers (NBN and tonal) perform well at low JSR, suitable for power-limited jammers.
- At high JSR, pulsed jammers show poor performance (low BER) due to concentrated power in short durations.
- Multi-tone, swept, and NBN jammers achieve $\sim 50\%$ BER at high JSR.
- Single-tone jamming is least effective for $J/P < 13$ dB, as it focuses power on a single frequency, ineffective against wideband SS signals.
- DSSS processing gain is more effective against narrow-band jamming.

- This work advances knowledge about intentional jamming techniques against conventional and SS communication systems.
- Key findings:
	- **Conventional BPSK**: Single-tone jamming is the most effective.
	- **DSSS system**: The optimal jamming technique depends on *J/P*:
		- *J/P <* 4 dB: Narrow-band pulse (NBN) is most effective.
		- \bullet 4 \leq *J*/*P* \leq 8 dB: Tonal pulse is most effective.
		- $8 < J/P \le 11$ dB: Swept jamming is most effective.
		- $J/P > 12$ dB: Multi-tone jamming is most effective.
- Conclusions enhance theoretical understanding and assist in selecting the best jamming technique for specific practical scenarios.
- This is a work in progress...

Thank you!

This work was partially supported by Minas Gerais Research Foundation (FAPEMIG) (RED-00194-23), under Minas Gerais Research Network in 5G and 6G project, by CNPq (Grant References 311470/2021-1 and 403827/2021-3), by the projects XGM-AFCCT-2024-2-5-1, XGM-FCRH-2024-2-1-1, and XGM-AFCCT-2024-9-1-1 supported by xGMobile – EMBRAPII-Inatel Competence Center on 5G and 6G Networks, with financial resources from the PPI IoT/Manufatura 4.0 from MCTI grant number 052/2023, signed with EMBRAPII, by RNP, with resources from MCTIC, Grant No. 01245.020548/2021-07, under the Brazil 6G project of the Radiocommunication Reference Center (Centro de Referência em Radiocomunicações - CRR) of the National Institute of Telecommunications (Instituto Nacional de Telecomunicações - Inatel), Brazil, and by Fapemig (PPE-00124-23, APQ-04523-23, APQ-05305-23 and APQ-03162-24.