An Efficient Machine Learning-based Channel Prediction Technique for OFDM Sub-Bands

Pedro E. Gória Silva, Jules M. Moualeu, Pedro H. Nardelli, Yonghui Li, and **Rausley A. A. de Souza**

> National Institute of Telecommunications (Instituto Nacional de Telecomunicações - Inatel)

2024 IEEE 99th Vehicular Technology Conference: VTC2024-Spring, 24-27 June 2024, Singapore

June 24, 2024

1 Motivation and novelty

- 2 Preliminaries
- 3 Channel Model
- 4 Channel prediction
- **5** Numerical Results
- 6 Conclusions
 - 7 Next Steps

- Channel state information (CSI)
- Channel estimation or channel prediction

To propose an efficient machine learning-based technique for channel prediction in OFDM sub-bands

- To deal separately with relevant aspects of wave propagation and antenna characteristics
- To evaluate the channel on a two-dimensional plane through which the mobile radio channel simulator consists of reflection points of the signal transmitted in the 2-D plane
- To address the birth and death problem of multipath clusters by allowing some reflecting points to move randomly during the channel simulation
- The simulated environment is such that there are multipaths;
- The free space attenuation is assumed for each multipath;

- The relative position of the transmitter P_{tx} and receiver P_{rx} , and initial position of the reflection points P_r (randomly generated) in Cartesian coordinates;
- The speed vector of the receiver S_{rx} and reflection points S;
- The total number of reflection points $N_{\rm r}$ and mobile reflection points $N_{\rm m}$;
- The carrier frequency f_c , the sampling frequency f_s , the bandwidth of the transmitted signal B, and the sampling time window p;

- **1** $P_{\rm r}$, $S_{\rm rx}$, and S are generated according to a Gaussian distribution
- 2 The length of a multipath $l_i = |\mathbf{P}_i \mathbf{P}_{rx}| + |\mathbf{P}_i \mathbf{P}_{tx}|$
- 3 The delay and phase of the multipath *i* are calculated as $\tau_i = l_i/c$ and $\phi_i = -l_i f_c/c \mod 2\pi$, respectively,
- The channel impulse response

$$I = \sum_{i=1}^{N} \frac{c}{4\pi f_{\rm c} l_i} \exp(\phi_i + 2\pi D_i l_i) \delta(\tau_i - t)$$
(1)

- Obtain the frequency response of the channel by the DFT
- The positions of the receiver and other mobile points are updated

$$\boldsymbol{P}_{\mathrm{rx}} \leftarrow \boldsymbol{P}_{\mathrm{rx}} + \boldsymbol{S}_{\mathrm{rx}} \Delta t \tag{2}$$

$$\boldsymbol{P}_{\mathrm{r}} \leftarrow \boldsymbol{P}_{\mathrm{r}} + \boldsymbol{S}\Delta t,$$
 (3)

6/17

Table 1: Summary of Channel Simulation Settings.

Symbol	Value	Description	
$P_{ m tx}$	(-200,0)	Transmitter's relative starting position	
$P_{ m rx}$	(200, 0)	Receiver's relative starting position	
$N_{ m r}$	256	Number of reflection points	
$N_{\rm m}$	63	Number of mobile reflection points	
$f_{\rm c}$	$900 \mathrm{~MHz}$	Carrier frequency	
$f_{ m s}$	$51.2 \mathrm{~MHz}$	Sampling frequency	
B	$12.8 \mathrm{~MHz}$	Bandwidth of the transmitted signal	
p	$10 \ \mu s$	Sampling time window	
SNR	12 dB	Signal-to-Noise ratio at receiver	
Δt	$500 \ \mu s$	Time between two consecutive	
		simulations of the channel	

Channel simulation: results

Figure 1: Frequency response of the channel over time.

(Singapore)

VTC 2024

Figure 2: (a) Cross-covariance and (b) autocovariance over τ for the frequency band of interest.

- Predict D steps ahead of the channel frequency response (CNN Predictor)
- Predict whether the channel intensity will be below a threshold D steps ahead (CNN Classifier).

Table 2: Summary of the Characteristics of the Predictor Layers.

#	Channels	Kernel	Dilation	Activation
		\mathbf{size}	rate	function
1	2	(3×10)	(1×1)	$ anh(\cdot)$
2	3	(10×10)	(1×16)	$ anh(\cdot)$
3	3	(10×10)	(10×1)	$ anh(\cdot)$
4	2	(10×3)	(1×64)	$ anh(\cdot)$
5	D	(1×64)	(1×1)	exponential

Figure 3: Mean Squared Error during training.

Predictor has smoother training and converges (≈ 8 training epochs)

(Singapore)

Numerical Results: ROC

Figure 4: ROC curves for a single sub-band and for the different steps ahead.

Table 3: Mean Squared Error over the 4096 samples from a new and uncorrelated channel.

Step ahead	MSE
1	24.455336
2	22.610251
3	26.049115
4	24.488873
5	23.515360
6	23.826602
7	25.350836
8	25.708386
9	25.830940
10	26.221350

- A simplified way to simulate a mobile radio channel with fading has been proposed
- A CNN predictor and classifier have been successfully employed to predict the multi-step fading channel in wireless broadband systems
- Both the predictor and the classifier performed adequately when training and testing were performed on uncorrelated physical scenarios

- Include the antenna parameters
- Different channels, like Rician
- Find a better CNN

Thank you!

This work is supported in part by the Academy of Finland via: (a) FIREMAN consortium n.326270 as part of CHIST-ERA-17-BDSI-003, (b) EnergyNet
Fellowship n.321265/n.328869/n.352654, and (c) X-SDEN project n.349965; by Jane and Aatos Erkko Foundation via STREAM project; by CNPq (Grant Nos. 403612/2020-9, 311470/2021-1, and 403827/2021-3), by Minas Gerais Research
Foundation (FAPEMIG) (Grant Nos. APQ-00810-21 and PPE-00124-23), and by the projects XGM-AFCCT-2024-2-5-1 and XGM-FCRH-2024-2-1-1 supported by xGMobile – EMBRAPII-Inatel Competence Center on 5G and 6G Networks, with financial resources from the PPI IoT/Manufatura 4.0 from MCTI grant number 052/2023, signed with EMBRAPII, and by the South African National Research Foundation (NRF) under the BRICS Multilateral Research and Development Project (Grant No. 116018).

(Singapore)

17 / 17