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Abstract—The Internet of Things (IoT) has transformed vari-
ous sectors, including agriculture and industrial automation, by
enhancing efficiency and productivity, including data-informed
decision-making. Innovative communication solutions play a
crucial role in the success of IoT applications in rural and remote
areas, where connectivity/broadband is limited or unavailable.
Agriculture and industrial IoT (IIoT) in this region will not
thrive because of poor network coverage or unreliable broadband
connectivity. This paper introduces a comprehensive strategy
for implementing broadband-based IoT (B-IoT) communication
solution for agribusiness and IIoT by leveraging an advanced
machine learning (AML) framework known as the parameter-
ized analytical modeling-based deep neural network-enhanced
parametric rectified linear unit (PDNN-ePReLU) model. This ap-
proach incorporates a novel parameterized-based DNN algorithm
and a new activation function FA to enhance Cognitive Radio
(CR) on TV White Spaces (TVWS) for backhauling and last-
mile connectivity, along with the use of fifth-generation (5G)
reduced-capability (RedCap) devices on sub-7GHz unlicensed
or private frequency bands for IoT access networks. The pro-
posed solution consists of an input layer comprising specific
network parameters, hidden layers, and an output layer focusing
on coverage, throughput, latency, and energy efficiency (EE),
which the PDNN-ePReLU model aims to optimize. This model
employs CR to utilize unused TVWS frequencies dynamically
and improves the network performance by predicting optimal
transmission and adaptively allocating resources. This paper
outlines a detailed implementation framework showcasing the
PDNN-ePReLU model’s training, validation, and test phases
while presenting the potential benefits for agribusiness and IIoT
in underserved areas. MATLAB simulation results indicate that
the optimized CR significantly enhances the coverage, through-
put, latency, and EE over long distances, outperforming legacy
CR and traditional networks (Wi-Fi, LTE, etc.). Furthermore,
the optimized 5G RedCap surpasses its legacy (non-optimized)
counterparts, offering a robust and scalable solution for B-IoT
in agribusiness and IIoT applications.
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I. INTRODUCTION

Integrating B-IoT communication solutions in agribusi-
ness and advanced AML techniques will help transform the
landscape of agriculture and IIoT. This synergy enhances
efficiency, productivity, and sustainability, addressing critical
challenges in modern farming that require high throughput
over long distances to support computational vision in pre-
cision agriculture (PA) and industrial automation (IA). The
significance of IoT-driven solutions in the enhancement of
PA and IA, particularly on the connectivity challenges and
requirements prevalent in rural and remote regions, cannot be
overstated, as effective connectivity in these areas possesses
the potential to revolutionize the PA and IIoT landscapes
through the utilization of real-time data acquisition, analysis,
and application. Connectivity solutions such as fifth gener-
ation (5G) networks offer high throughput internet, which
is essential for high data rate IoT applications within the
agribusiness and IA sectors [1]. However, they may not be
extensively extended to remote and rural areas due to the high
cost of deployment and the low return on investment (ROI).
Hence, cost-effective connectivity solutions that afford broader
coverage, as well as high data rates, emerge as the most
favorable options for rural agricultural contexts. These solu-
tions will help in supporting certain IoT-enabled agricultural
applications, including crop health monitoring and livestock
video imaging, necessitating the transmission of substantial
data volumes. The provision of suitable IoT connectivity
characterized by high data rates over long distances or ranges
is crucial in facilitating adequate throughput in agribusiness
and IA. This necessitates the idea of developing a hybrid
solution that will jointly address the coverage and throughput
challenges over long distances concurrently leveraging an



innovative AML technique called the PDNN-ePReLU model.
Furthermore, understanding the concept of agribusiness and
IA is important. On one hand, agribusiness encompasses the
commercial activities related to the production, processing, and
distribution of agricultural products. It covers the entire supply
chain, from farming operations like crop cultivation and animal
husbandry to the transformation of raw agricultural materials
such as seedlings into food or other products, as well as the
transportation and marketing of these goods. The scope of
agribusiness extends to include the provision of inputs such
as seeds and machinery, various services, marketing efforts,
and trade operations. The primary focus of this sector is
on enhancing agricultural efficiency, profitability, and long-
term sustainability. On the other hand, IA refers to the im-
plementation of control systems, including computers, robots,
and information technology, to manage industrial processes
with minimal human involvement. This approach involves
automating various tasks in manufacturing, quality assurance,
and materials handling to boost efficiency, precision, and
output. The field of IA incorporates technologies such as
robotics, programmable logic controllers (PLCs), ML, and
artificial intelligence (AI). These tools are used to optimize
operations, minimize errors, reduce expenses, and enhance
overall production results across various industries. Hence, the
contemporary IoT application use cases in agribusiness and IA
requiring high data rates over long distances are:

• Computational Vision for crop and cattle monitoring:
B-IoT facilitates computational visions leveraging high-
resolution cameras mounted on fixed structures to capture
images of crops across large fields [2].

• Real-time Remote Control of Drones and Machinery: B-
IoT facilitates real-time remote control of drones and
machinery by equipping drones with high-definition cam-
eras, multispectral sensors, and GPS receivers deployed
over large agricultural fields [3].

• Navigation and Platooning for DA: B-IoT is instrumen-
tal in revolutionizing DA by enabling advanced func-
tionalities like navigation and platooning of agricultural
machinery. For example, tractors and other agricultural
machinery equipped with GPS receivers and B-IoT sen-
sors navigate precisely across large agricultural fields,
following predetermined paths that optimize the coverage
and minimize overlap or gaps [4].

• Big Data for Agribusiness: B-IoT facilitates the harness-
ing of big data to drive agribusiness innovations and
decision-making processes. This setup allows for collect-
ing, transmitting, analyzing, and utilizing vast amounts
of data from various sources, transforming traditional
farming into a data-driven industry [5].

• Collaborative Robots: B-IoT facilitates fast data transfer
for real-time processing, motion control, and sensor feed-
back [6].

• Real-time Monitoring and Control: Systems like Su-
pervisory Control and Data Acquisition (SCADA) need

high-speed data to monitor and control operations in
manufacturing, energy, and utilities [7].

• Computer Numerical Control (CNC) Machines: B-IoT fa-
cilitates fast data transfer for precise control of machining
operations [8].

• Augmented Reality (AR)/Visual Reality (VR) for Main-
tenance: B-IoT facilitates AR/VR including extended
reality (XR) systems used in industrial settings for real-
time diagnostics and remote assistance to render detailed
images and information [9].

Hence, it is obvious that B-IoT is important in supporting
agribusiness and IA/IIoT applications. This paper is motivated
by solutions that will address both coverage and throughput
challenges over long distances. Consequently, this paper’s
contributions are enumerated below.

• To develop a hybrid solution that will jointly address the
coverage and throughput over long distances challenges
using CR/TVWS for backhauling and 5G RedCap for the
B-IoT access network.

• To develop a novel AML technique called the PDNN-
ePReLU model.

• To implement a new activation function (ePReLU) for
optimizing output parameters (coverage, throughput, la-
tency, and EE of the CR and 5G RedCap network
leveraging PDNN-ePReLU training and validation.

• To implement the PDNN-ePReLU algorithm and demon-
strate the effectiveness of the solution, for example,
showcasing the viability of CR maintaining appreciable
coverage at increasing distances unlike legacy CR and
traditional networks (Wi-Fi, LTE, etc.) that maintain
coverage only at shorter distances because their coverage
diminishes rapidly as distance increases.

• To incorporate a generalized frequency division
multiplexing-based adaptive quadrature amplitude
modulation and coding scheme (GFDM-AQAMCS)
in the PDNN-ePReLU framework as a viable
parameterization network component for optimal
solution.

• To provide cost-effective communication solutions that
significantly benefit agribusiness and IA industries over
long distances without spectrum license procurement.

Hence, the remainder of this paper is structured as follows:
Section II discusses related works. Section III presents the pa-
rameterized analytical modeling. In section IV, we present the
network architecture and PDNN-ePReLU model framework.
In section V, we demonstrate the PDNN-ePReLU implemen-
tation and simulation. In section VI, we present the results and
discussion. Finally, we conclude the paper in section VII.

II. RELATED WORKS

In recent years, significant research has been conducted on
utilizing TVWS for rural broadband connectivity. TVWS’s
ability to provide long-range communication at lower frequen-
cies makes it an ideal solution for underserved rural areas.



Numerous studies have highlighted the potential of CR in
exploiting TVWS efficiently. However, the studies have not
experimented with network performance improvement over
long distances. For instance, the authors in [10] present a
medium access control protocol for a CR network, providing
deterministic medium access for heterogeneous traffic and
dynamic spectrum allocation to guarantee timely treatment of
hard real-time traffic in industrial settings. This addresses only
latency without considering long distances. The authors in [11]
present an energy-efficient spectrum access (EESA) model for
multi-channel mobile CR-WSN, and the experiment outcome
shows EESA attains significant performance over the existing
model in terms of throughput and energy efficiency though
not in long-distance scenarios. The authors in [12] presented
an outline of Cognitive-based IoT frameworks. They discussed
the possible uses of Cognitive-based IoT frameworks, the EE,
and the throughput of cognitive-based IoT frameworks. Still,
they did not consider performance over long-distance scenarios
or ML techniques for network performance improvement.

On the other hand, 5G RedCap devices have been identified
as key enablers of massive IoT applications, especially in
industrial environments. These devices are projected for low-
cost, low-power consumption, making them suitable for IoT
devices that require moderate data rates (up to 300 Mbps)
[13]. Some of the works that investigated network perfor-
mance improvement include the work in [14], which sug-
gests optimizing beam management and energy consumption
for RedCap devices but does not specifically address ML
techniques for improving coverage, throughput, latency, and
energy efficiency, and did not consider performance over long
distances. The study in [15] highlights coarse-grained channel
quality prediction as a viable method to enhance efficiency in
5G-RedCap devices, optimizing resource utilization without
increasing computational complexity in diverse scenarios but
does not consider performance over long distances in the work.
The authors in [16] present a genetic algorithm-based neural
network (GA-NN) model that enhances 5G RedCap devices by
improving coverage, energy efficiency, and throughput, mak-
ing them suitable for long-distance applications in agribusiness
and IIoT but did not consider the integration of CR, and 5G
RedCap for a unified IoT communication solution, so that the
CR can support long distances as backhauling. The study in
[17] demonstrated energy consumption modeling for RedCap
devices in 5G networks but does not specifically address
improving coverage, throughput, latency, or energy efficiency
using ML techniques, and does not consider performance over
long distances. Uplink performance enhancement of RedCap
devices using existing 5G solutions is investigated in [18]
but does not specifically address ML techniques for coverage
and EE in rural and underserved areas. The work in [19],
focuses on coverage evaluation of RedCap without specifically
improving throughput, latency, and energy efficiency in NR-
RedCap devices using ML techniques for agribusiness and
IIoT in rural and remote areas. The study in [20], emphasizes
enhancing throughput and latency in smart farming through
a 5G-enabled pest and disease detection and response system

(PDDRS) but does not specifically address RedCap devices or
their EE in underserved areas.

From the literature, it is obvious that the integration of CR
and 5G RedCap for a unified IoT communication solution, and
the network performance metrics such as coverage, through-
put, latency, and energy efficiency improvements over long
distances for agribusiness and IIoT in underserved/rural areas
using ML algorithms have not been holistically investigated.
This paper builds on the existing research by introducing an
AML-based solution that enhances the performance of these
technologies and optimizes network resources in real-time
while addressing the identified limitations holistically.

Overall, the PDNN-ePReLU offers several advantages
over prior work, especially in terms of faster conver-
gence/generalization, improved adaptability in diverse environ-
ments, and non-linearity handling as well as the simplification
of the nonlinearity to linearity for further analysis with a
better understanding of the trend. However, it also introduces
challenges related to the sensitivity to hyperparameter tun-
ning because PDNN-ePReLU requires careful tuning of its
learnable parameters (α and τ ) threshold. Improper tuning can
lead to poor performance, particularly if the learning rate or
initialization values are not properly set. For example, in sce-
narios involving large and highly dynamic systems like smart
grid networks or autonomous systems, improper tuning may
result in increased experimentation time and computational
cost to achieve optimal performance. Another weakness is
selectivity to application requirements, in which the PDNN-
ePReLU benefits the most in high-complexity environment
scenarios because of its flexible and adaptive nature, while
simpler applications might not justify its potential maximally
for high-complexity.

III. PARAMETERIZED ANALYTICAL MODELING

During data transmission, the transmitted signal is affected
by channel fading. Hence, a strong signal strength, appro-
priate modulation technique, reliable encoder/decoder, and
appreciable energy/SNR are needed to maintain a minimal
error probability or block error rate (BLER) on the receiver
side. Consequently, key parameters are parameterized by the
analytical model. GFDM-AQAMCS is considered in the pa-
rameterized modeling for minimal error.

The GFDM system employs a shorter cyclic prefix (CP)
compared to orthogonal frequency division multiplexing
(OFDM), which makes it exhibit minimal out-of-band (OOB)
emissions [21]. It facilitates fragmented spectrum utilization
including mitigation of significant interference to coexisting
users, thereby making it spectral efficient. GFDM has been
advocated as an attractive option for applications that require
low latency and minimal interference, such as real-time IoT
applications [22].

Hence, modeling the BLER of GFDM-AQAMCS involves
key network parameters. The analytic parameterized model is
defined in the PDNN-ePReLU framework before the dataset
generation for PDNN-ePReLU model training, validation, and
testing.



The BLER for GFDM-AQAMCS is based on a QAM Mod-
ulator. GFDM is a flexible and spectrally efficient modulation
scheme that allows the use of non-orthogonal subcarriers,
QAM is used for its modulation. In this situation, the QAM
is employed to be adaptive with a coding scheme (CS) giving
rise to the term AQAMCS. The BLER is the probability of a
block of data being received with at least one error, and it is
obtained from the symbol error rate (SER) and the block size.
The result of analytical expressions to evaluate the SER or bit
error rate (BER) of a GFDM system conforms with that of a
simulation result as demonstrated in [23].

Furthermore, considering the analytical modeling approach,
the SER for the MQAM signal under Additive white Gaussian
noise (AWGN) channel condition is given as

SERMQAM = 1−

(
1− 2(1− 1/

√
M)

log2(M)

)
×

Q

(√
3 · log2(M)

M − 1
× γ

2

)2 (1)

Where M is the QAM modulation order, Q is the Q-
function, representing the tail probability of the Gaussian
distribution, γ is the SNR.

SER for GFDM
In GFDM, the overall SER depends on the number of

subcarriers K and the number of sub-symbols M . Then,
using QAM on each subcarrier, the SER for GFDM with K
subcarriers and MQAM modulation is given by:

SERGFDM = SERMQAM (2)

Each subcarrier in GFDM experiences the same SER as the
MQAM-modulated signal.
BLER from SER: If the block contains N symbols, the SER is
the probability that any individual symbol is received in error,
then the BLER can be computed as:

BLERGFDM−AQAMCS = 1− (1− SERGFDM )N (3)

Where SERGFDM is the symbol error rate for GFDM, N
is the number of symbols in the block.

To obtain SER for MQAM signal under a Rayleigh fading
channel, the average SER will be integrated over the Rayleigh
fading probability density function (PDF).

Hence, the SNR PDF Distribution for the Rayleigh Fading
is given by

pγ(γ) =
1

γ̄
e−γ/γ̄ , γ ≥ 0 (4)

Where γ is the instantaneous SNR, γ̄ is the average SNR.
Then to compute the average SER under Rayleigh fading,

we integrate the average SER on the AWGN condition over
the Rayleigh fading PDF SNR. Hence,

SERMQAM−Rayleigh =

∫ ∞

0

SERMQAM (γ) ·pγ(γ) dγ (5)

Substituting the expressions for SERMQAM (γ) and pγ(γ),
we have

SERMQAM−Rayleigh =

∫ ∞

0

(
1−

(
1− 4

log2(M)

)
(
1− 1√

M

)
Q

(√
3 log2(M)

M − 1
γ

)2

· 1
γ̄
e−γ/γ̄ dγ

(6)

Therefore, the analytical approximation for the average SER
of MQAM under Rayleigh fading gives

SERMQAM−Rayleigh ≈
(

4

log2(M)

)
×(

1− 1√
M

)
×

(
1

1 + 3
M−1 · γ̄

) (7)

Similarly,

SERGFDM−Rayleigh = SERMQAM−Rayleigh (8)

Likewise,

BLERGFDM−AQAMCS = 1− (1−SERGFDM−Rayleigh)
N

(9)
Therefore, by substituting (7) in (9), we have,

BLERGFDM−AQAMCS = 1−
(
1− 4

log2(M)

)
(
1− 1√

M

)(
1

1 + 3
M−1 · γ̄

)N (10)

IV. NETWORK ARCHITECTURE AND
PDNN-EPRELU MODEL

A. Network Architecture

The PDNN-ePReLU network architecture has two seg-
ments: the CR network for last-mile/backhaul connectivity and
the 5G RedCap network for IoT access networks. The CR
network helps to connect the network to a distant location
or underserved remote areas where the farms and industries
are situated. The 5G RedCap network will then leverage
the extended network services for the IIoT networks in the
farms/industrial settings.

1) CR for Backhauling/Last-Mile Connectivity: CR lever-
ages dynamic spectrum access (DSA) capability to access
TVWS frequencies dynamically. CR network represents the
secondary users (SUs) users or unlicensed users without a
spectrum license. The CR uses the existing spectrum through
opportunistic access without causing harmful interference to
the primary users (PUs) or licensed users [24]. CR base
station (BS) or gateway searches for the available portion
of the spectrum that is not in use called a spectrum hole
or white space. Available channels are then used for long-
distance transmission as backhauling or last-mile connectivity
with other CR users in remote areas. The PDNN-ePReLU
framework predicts traffic patterns and adjusts spectrum al-
location based on real-time demand, and optimal coverage



and throughput. The CR gateway at the remote location has
a dual interface (CR and RedCap) to offload broadband data
stream to the RedCap interface. The PDNN-ePReLU network
architecture is depicted in figure 1.

Fig. 1. PDNN-ePReLU network architecture.

2) 5G RedCap for IoT Access Networks: 5G RedCap de-
vices are meant to support medium-to-high data rate IoT appli-
cations that are presently not supported by IoT connectivity de-
vices like low power wide area networks (LPWANs) devices:
LoRaWAN, Sigfox, NB-IoT, etc [16]. The 5G RedCap devices
are deployed as access points for IoT access networks. The
RedCap devices operate on a lower complexity 5G standard,
providing adequate throughput for most IoT applications while
minimizing power consumption. These devices leverage sub-
7 Ghz free-spectrum or 5G private network shared spectrum
for their connectivity, thus making it a cost-effective solution.
The PDNN-ePReLU model is applied to optimize the GFDM-
AQAMCS and improve the overall throughput and EE of the
RedCap.

B. The PDNN-ePReLU Model Framework

The PDNN-ePReLU is a framework for handling optimiza-
tion tasks emphasizing prediction. It leverages DNN and a
new activation function called ePReLU to provide accurate
predictions. In this paper, the PDNN-ePReLU model is imple-
mented to optimize and predict measurable output parameters
of networks. The PDNN-ePReLU model framework consists
of an input layer with eleven parameters, two hidden layers
(22 neurons in hidden layer 1, and 11 neurons in hidden
layer 2) with four network parameters, and an output layer
with four parameters. Figure 2 shows the PDNN-ePReLU
model framework. The hidden layer parameters depend on the
input parameters. Hence, for each input parameter, there is
a corresponding hidden layer parameter, which is computed
from a given expression. Similarly, the output parameters
depend on the input and hidden layer parameters, which
are obtained from a given expression. The details for these
expressions are provided in the algorithm section.

• Input layer: The input dataset includes SNR, Receiver
sensitivity, Path loss, Transmit power, Channel band-
width, Carrier frequency, Modulation order, Channel

Fig. 2. PDNN-ePReLU architectural framework.

quality indicator (CQI), Coding rate, Spectrum sensing
channels (SSC) information, and Distance.

• Hidden layers: This comprises two layers with four
parameters, which include block error rate (BLER), Max-
imum coupling loss (MCL), signal strength, and received
signal power (RSP).

• Output layer: This includes Coverage, Throughput, La-
tency, and EE.

1) PDNN-ePReLU Model Representation: The definition of
the PDNN-ePReLU model framework follows an algorithmic
process. First, the model is built layer-wise and includes
the necessary operations, such as weight (W) and bias (b)
computation, followed by the activation function.

For a single fully connected layer with n inputs and m
neurons, the weighted sum for each neuron i is computed as

zi =

n∑
j=1

wijxj + bi (11)

Where x = [x1, x2, . . . , xn] is the input vector. wi =
[wi1, wi2, . . . , win] is the weight vector for the i-th neuron.
bi is the bias term for the i-th neuron.
Using vector notation for all neurons in the layer, we can
express the weighted sum for the entire layer as

z = Wx+ b (12)

Where W ∈ Rm×n is the weight matrix (size m×n, where
m is the number of neurons in this layer). b ∈ Rm is the bias
vector (size m).

Applying the ePReLU activation function After computing
the weighted sum zi for each neuron, we apply the ePReLU
activation function to introduce non-linearity.

The ePReLU function is an enhancement of the traditional
ReLU function and is defined as

yi =

{
zi, if zi > 0, τi

αizi, if zi ≤ 0, τi
(13)

Where zi is the weighted sum (pre-activation value) for the
i-th neuron. yi is the output after applying ePReLU to the i-th
neuron [16], αi is a learnable parameter that adjusts the slope



for negative values. τi is the learnable threshold for the i-th
neuron.

In nonzero with negative slope conditions, ePReLU be-
comes

ePReLU(yi) =

{
zi, if zi ≥ τi

α · (zi − τi), if x < τi
(14)

In vector notation, for all neurons in the layer, the ePReLU
activation function is applied element-wise as

y = ePReLU(z) =

{
z, if z > τ

α⊙ (z− τ), if z ≤ τ
(15)

Where α is the vector of αi values for all neurons. τ is the
vector of τi values for all neurons. ⊙ represents element-wise
multiplication.

If we extend this to multiple layers, the general expression
for the l-th layer becomes

z(l) = W(l)y(l−1) + b(l) (16)

Where z(l) is the weighted sum (pre-activation) for layer l.
W(l) and b(l) are the weights and biases for layer l. y(l−1) is
the output from the previous layer (or the input to the network
if it’s the first layer).

The output after applying the ePReLU activation function
at layer l is

y(l) = ePReLU(z(l)) =

{
z(l), if z(l) > τ (l)

α(l) ⊙ (z− τ)
(l)
, if z(l) ≤ τ (l)

(17)
2) PDNN-ePReLU Algorithm: ‘
1 Initialized input features: Input number of samples %
numSamplesStage1 = 1500;% numSamplesStage2 = 500;

2 Define Parameterized model: equation (7) & (10);
3 Generate Input numSamplesStage1: SNR: random values
> 0& ≤ 30 dB; Receiver Sensitivity: random values >
-90 & ≤ −80dBm; Path Loss: random values > 80&
≤ 130dB; Transmit Power: random values between 20
and 30 dBm; Channel quality indicator (CQI): random
integer values between 1 and 15; Channel bandwidth: set
to 20 MHz & 8 MHz; Carrier frequency: set to 5 GHz
& 470-890 MHz; Modulation order: randomly choose
between 16-QAM & 64-QAM; Coding rate: randomly
choose between 0.5 & 0.75; SSC: random integer values
representing spectrum channel information; Distance over
100 km;

4 Compute BLER/SER: use the Parameterized GFDM-
AQAMCS BLER/SER model and the SamplesStage1
generated parameters to compute the BLER or symbol
error rate for each sample;

5 store first 1000 samples that are within BLER threshold
into the input data matrix & store the remainder into the
numSamplesStage2 ;

6 Compute the hidden layer parameters: MCL:
MCL = PathLoss+10 · log10(CarrierFrequency)−

TransmitPower; RSP: RSP = TransmitPower −
PathLoss+SNR; Signal strength: SignalStrength =
TransmitPower − PathLoss; BLER: computed for
each corresponding input leveraging the parameterized
GFDM-AQAMCS BLER model.

7 Prepare Input and Output Datasets
(i) Input Data Matrix: concatenate the stored input data
matrix: [SNR, Receiver sensitivity, Path loss, Transmit
power, CQI, Channel bandwidth, Carrier frequency, Mod-
ulation Order, Coding rate, SSC, Distance]. These are
stored as parameterized input datasets which will be
generated for training the model.
(ii) Output Data Matrix: Define the 4 output parameters to
predict: Coverage, Throughput, Latency, and EE. These
are computed based on the inputs and hidden layer
parameters:

Coverage = C0 ·
MCL

Pathloss

where C0 is the constant that depends on the network
traffic conditions.

Throughput = B · log2(1 + SNR) · (1− BLER)

B is the channel bandwidth (Hz)

Latency = C0 ·
Pathloss

CQI

EE =
B · log2(1 + SNR)

Transmit power

8 Split Data for Training, Validation, and Testing Split the
Dataset: split the dataset into 70% for Training, 15% for
Validation, and 15% for Testing.

9 Define the PDNN-ePReLU Model with ePReLU Activa-
tion Function; (i) Input Layer: Input size is 11 (number
of input features);
(ii) First hidden layer: 22 neurons;
(iii) Apply the ePReLU activation function defined in eqn
(15) or (17);
(iv) Second hidden layer: 11 neurons;
(v) Apply another ePReLU activation function;
(vi) Output Layer: neurons representing Coverage,
Throughput, Latency, and EE;
(vii) Regression layer is used for continuous output;

10 Train the PDNN-ePReLU Model (i) Define Training
Options: use the Adam optimizer; set the number of
epochs = 100; set the mini-batch size = 64; use Root
Mean Squared Error (RMSE)as the loss or error function;
(ii) Train the model using the training dataset;

11 Initialize Weights and Biases for all Layers: for each
layer, initialize weights randomly; Initialize bias terms
for each neuron;

12 Forward Propagation: for each epoch: pass input param-
eters through the input layer; for each hidden layer:
apply fully connected layer operation (Weighted sum +
bias);



apply ePReLU activation function with slope parameter
α and threshold τ
Output Layer: apply fully connected layer;

13 Predict network parameters (Coverage, Throughput, La-
tency, EE);

14 Loss Calculation: compute the loss using RMSE between
predicted outputs and actual outputs;

15 Backpropagation: for each output neuron:
(i) Compute the gradient of loss concerning weights and
biases;
(ii) Propagate gradients back through each layer using the
chain rule;
(iii) Update weights and biases using the Adam optimizer;

16 Validation: after every 10 epochs, validate the model
using the validation dataset; Compute validation loss and
track performance for accurate model generalization;

17 Update ePReLU Parameters (α and τ ): adjust ePReLU
slope parameter α and threshold τ during training as part
of backpropagation to minimize loss;

18 Repeat Steps 10 to 17 for all epochs;
19 Output: predicts optimized parameters for new unseen

inputs after training of the model is complete;
Then, output predicted parameters: Coverage, Through-
put, Latency, EE;

20 Test the Model: use the trained model to predict network
performance for unseen test data from the test set or a
new separate data.

21 repeat the process from step 4 leveraging
numSamplesStage2 & step 5 to store any number samples
within the BLER threshold for BLER computation into
input matrix2;

22 Then, repeat steps 6 to 20 for extended and future model
training, validation, and testing;

23 End;

V. IMPLEMENTATION AND SIMULATION

The PDNN-ePReLU model is a parameterized DNN that
uses the ePReLU activation function, providing better flexi-
bility and robustness in handling complex tasks like commu-
nication system optimization. The implementation follows the
earlier presented PDNN-ePReLU framework and Algorithm.
This involves an input layer comprising 11 input features; two
hidden layers with four features comprising 22 neurons in
hidden layer 1, and 11 neurons in hidden layer 2; an output
layer with four features. This framework is implemented in
MATLAB 2024a leveraging the DNN and Communication/5G
toolbox. The input features are parameterized and stored in the
input matrix after being used for the BLER/SER computations
for the 1000 samples. These parameterized stored datasets are
generated for the model training.

Let x be the input to the framework, and the forward
pass through the two hidden layers and applying the ePReLU
activation function are written as:

For Layer 1:

z(1) = W(1)x+ b(1) (18)

y(1) = ePReLU(z(1)) (19)

For Layer 2:

z(2) = W(2)y(1) + b(2) (20)

y(2) = ePReLU(z(2)) (21)

To demonstrate the effectiveness of the PDNN-ePReLU
model, a simulation model was developed in MATLAB 2024a
that integrates: CR via TVWS: the CR dynamically selects
available TVWS frequencies from the spectrum sensing chan-
nel feature in the dataset for backhauling over a 100 km
distance, optimizing the use of available spectrum and pre-
dicting optimized coverage, throughput, latency, and EE over
this distance.
5G RedCap Device Simulation: the RedCap device was
simulated to provide IoT access over a 100 km distance
and to optimize the modulation and coding rate and other
input features from the input matrix to improve coverage,
throughput, latency, and EE prediction over this distance. A
first-order polynomial leveraging linear regression approach
is incorporated in this simulation to transform the nonlinear
PDNN-ePReLU output into a linear graph for a simplified
further analysis. The simplified linearity still maintains a
reasonable approximation of the original nonlinear behavior.

Table 1 shows the simulation parameters for PDNN-
ePReLU model implementation and comparisons with legacy
CR and RedCap (without model optimization). In the simula-
tion setup, the traditional or legacy CR and 5G RedCap sys-
tems utilize a simplified wireless communication mechanism
without deep learning optimizations. They use traditional MCS
and other basic features/parameters as baseline models without
dynamic adjustments based on network conditions. However,
the PDNN-ePReLU model leverages the DNN and ePReLU
parameters for dynamic adjustments based on network con-
ditions to improve the performance of CR and 5G RedCap
systems.

VI. RESULTS AND DISCUSSION

The MATLAB 2024a simulation results demonstrate the
effectiveness of the PDNN-ePReLU model and show perfor-
mance improvement better than the legacy CR and 5G RedCap
in terms of coverage, throughput, latency, and EE over 100 km
distance ranges as juxtaposed below. Considering Coverage
performance over 100 km distances, the use of CR optimized
with the PDNN-ePReLU model extends the coverage area by
approximately 37% compared to legacy CR solutions in rural
areas. This is because there is a slightly minimal decrease of
optimized CR coverage as the distance increases, unlike the
legacy CR in which the coverage decreases rapidly as shown in
Figure 3. This estimate is obtained by considering the coverage
at the 70 km distance. The CR with the PDNN-ePReLU model
gives an 8.8% decrease in coverage while the legacy CR gives
a 41.17% decrease in coverage.



TABLE I
SIMULATION PARAMETERS.

Parameters Value

Simulation runs 100,000
Channel fading Rayleigh
Modulation order 16-QAM, 64-QAM
SNR 0:3:30 (dB)
B 5 MHz, 6 MHz, 8 MHz, and 20 MHz
Tx 1
Rx 1
Encoder polar code
Carrier frequency 470 to 890 MHz, and 5 to 7 GHz
Receiver Sensitivity -90 to -70 dBm
Transmit power 15 to 25 dBm
Path loss 80 to 160 dB
Device type CR, and 5G RedCap
CQI 1 - 15
Coding rate 0.5 - 0.75
Distance 0 - 100 km
SSC 20 - 50
MCL 0 - 180
Number of subcarriers (No) 52
Epoch 100
iteration 1000
Learning rate 0.001
W 0: 1000
ePReLU thresholds (α, τ) 0.1, 0.2, 0.9 and 2, 3, 5

Similarly, the coverage of the 5G RedCap optimized with
the PDNN-ePReLU model outperforms the legacy 5G RedCap
by 56% improvement as shown in Figure 4. This is because
of a minimal decrease in optimized RedCap coverage as
the distance increases, whereas the legacy RedCap decreases
sharply with the increased distance.
Considering the throughput performance as distance increases,
figures 5 and 6 show that the throughput of the CR and RedCap
optimized with the PDNN-ePReLU model outperforms legacy
CR and RedCap respectively.
Furthermore, figures 7 and 8 demonstrate that the latency
of the CR and RedCap optimized with the PDNN-ePReLU
model outperforms legacy CR and RedCap respectively. This
is because the latency increases minimally for the optimized
systems, however, it increases rapidly in the legacy systems.

Finally, figures 9 and 10 confirm that the EE of the CR
and RedCap optimized with the PDNN-ePReLU model out-
performs legacy CR and RedCap respectively. This is because
the EE of the CR and RedCap optimized with the PDNN-
ePReLU model decreases minimally as distance increases, and
it maintains higher energy-efficient values with distance than
the legacy systems which show a rapid decrease in EE and
low energy-efficient values with distance.

Fig. 3. Coverage performance comparison for CR.

Fig. 4. Coverage performance comparison for 5G RedCap.

Fig. 5. Throughput performance comparison for CR.



Fig. 6. Throughput performance comparison for 5G RedCap.

Fig. 7. Latency performance comparison for CR.

Fig. 8. Latency performance comparison for 5G RedCap.

Fig. 9. EE performance comparison for CR.

Fig. 10. EE performance comparison for 5G RedCap.

VII. CONCLUSION
This paper presents an innovative B-IoT communication

solution for agribusiness and IIoT that leverages CR network
for backhauling/last-mile connectivity and 5G RedCap devices
for IoT access networks. Integration of the PDNN-ePReLU
model enhances network performance, ensuring that cover-
age, throughput, latency, and energy efficiency are improved.
This approach involves incorporating a new parameterized
modeling into DNN and a new activation function called
ePReLU which enables weight and bias adjustment of the
model uniquely for optimal solution. It addresses the unique
challenges of rural connectivity, offering a scalable and cost-
effective solution for the deployment of IoT applications in
remote areas. Considering the uniqueness of the features, the
paper presents new algorithmic steps that enable accurate
generalization of the model with the capability of supporting
transfer/incremental learning. The MATLAB 2024a simulation
results demonstrate that the PDNN-ePReLU model signifi-
cantly outperforms the legacy CR and 5G RedCap in terms of



coverage, throughput, latency, and EE over 100 km distance
ranges. Hence, this communication solution is a cost-effective
and viable solution for agribusiness and IA industries in un-
derserved areas not presently covered by traditional networks.
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