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Abstract—This paper evaluates the performance of cooperative
spectrum sensing in TV White Spaces (TVWS) environments
under impulsive noise using sample and decision fusion methods
employing the majority rule. Realistic scenarios are considered
with orthogonal frequency division multiplexing (OFDM) signals
transmitted in the ISDB-T/TB TV standard, used in several
countries, including Japan, Brazil, and others. We investigate the
performance of the cooperative energy detection technique under
various conditions, including additive white Gaussian noise,
multipath fading, and impulsive noise. The results demonstrate
that cooperative sensing can significantly improve detection
probability and reduce false alarm rates compared to non-
cooperative ones. The study highlights the impact of impulsive
noise on system performance. It emphasizes the importance of
choosing the correct decision rule in enhancing the reliability of
spectrum sensing in cognitive radio networks. It also considers
the number of radios in the cooperative network and the number
of samples collected by each cognitive radio, among other factors.
The findings contribute to developing more efficient spectrum
utilization strategies for wireless communication systems in
TVWS, helping solve the spectrum scarcity problem.

Index Terms—TV White Spaces, cooperative spectrum sensing,
impulsive noise, energy detection, ISDB-TB, OFDM.

I. INTRODUCTION

The frequency spectrum is a valuable resource in the area of
wireless communication. However, only a small portion can be
used due to technical and political limitations, making it scarce
and expensive. Analyses by different authors around the world
have shown that the current spectrum scarcity scenario arises
not only from a physical limitation of the electromagnetic
spectrum but also from its underutilization [1], largely due to
the current fixed spectrum allocation policy, which becomes
more evident in the VHF (very high frequency) and UHF (ultra
high frequency) bands, which are intended for TV channel
allocation.
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The unused spaces of the TV spectrum have become known
worldwide as TV White Spaces (TVWS). They are emerging,
along with a new policy of dynamic spectrum allocation called
dynamic spectrum access (DSA), as a solution to overcome
this problem of “scarcity” and make spectrum use more
efficient. Recently, the National Telecommunications Agency
(ANATEL) board of directors in Brazil approved a proposal
to regulate the dynamic use of idle TVWS spectrum by sec-
ondary users [2]. The approved resolution proposal assigns and
designates VHF and UHF bands for this type of application,
initially considering the 54-72 MHz, 174-216 MHz, 470-608
MHz, and 614-698 MHz bands. “The regulations regulate
the application of this technology, which allows the dynamic
designation of radio frequencies intended for broadcasting
that are not authorized for telecommunications services. This
dynamic use of idle TVWS spectrum increases the efficiency of
using spectrum, a limited resource, with characteristic advan-
tages of TV frequency bands, such as long-range and tolerance
to obstacles” [2]. Thus, to utilize this resource efficiently, it is
necessary to study and develop increasingly intelligent radios
equipped with new technologies. These intelligent radios are
called cognitive radios (CRs) [3] and promise to solve the
problem of electromagnetic spectrum scarcity by their main
functionality, namely spectrum sensing (SS).

In non-cooperative SS (non-CSS), each CR performs spec-
trum monitoring independently, without sharing information
with other CRs, which may result in an unreliable decision.
Another approach would be the cooperative SS (CSS), in
which several CRs collect information from a channel, such as
the received samples or individual decisions about occupancy,
and send it to a fusion center (FC), which makes a global and
more reliable decision about the channel’s occupancy state.

Several studies in the field of SS address different scenarios
and use different implementation techniques. For example, the
authors in [4] present research on CR non-cooperative archi-
tectures and SS techniques such as matched filtering, energy
detection (ED), and cyclostationary detection. However, non-
CSS suffers greatly from decision inaccuracies due to practical
problems such as receiver noise and multipath fading [5].
Authors in [6] present a study addressing CSS under imperfect
reporting channels. Meanwhile, in [7], the problem of hidden
nodes is presented as one of the most challenging issues in
CSS, and the Graph Convolutional Networks (GCN)-CSS is



proposed, a cooperative spectral detection methodology based
on GCN that adapts to dynamic changes in the CR network.
However, despite the variety of scientific efforts, there is still
a shortage of works focusing on more realistic disturbs and
practical applications of SS techniques.

In this context, the present work aims to deepen the
exploration of CSS in TVWS scenarios through MATLAB
simulations, adopting a more realistic approach focusing on
future practical implementation in software-defined radio. The
study presented here offers the following contributions:

1) The primary user (PU) signal considered in the analyses
is fully compliant with those encountered in practice
in the TVWS bands in Japan, Brazil, and several other
countries, specifically an OFDM signal with a 5.57 MHz
bandwidth of the ISDB-T/TB type;

2) A pessimistic TVWS sensing scenario with fading is
also considered, where the CRs operate in a non-line-
of-sight (nLoS) environment;

3) Beyond the additive white Gaussian noise (AWGN), we
have also considered the impact of impulsive noise (IN)
on the CSS performance for TVWS;

4) The performance of two distinct data fusion techniques
in CSS, sample fusion (SF) and decision fusion (DF)
methods, is evaluated in several TVWS scenarios, lead-
ing to interesting and novel conclusions regarding the
conditions under which each method performs optimally.

The remainder of this article is structured as follows. Section
II presents the mathematical modeling of the SS system, along
with the impulsive noise model and the primary user signal
considered in this work. Section III details the TVWS SS
simulation setup. The results are discussed in Section IV.
Finally, Section V offers concluding remarks.

II. SYSTEM MODEL

A. Mathematical Modeling of a Spectrum Sensing System

The considered model consists of two hypotheses that will
be used for decision-making, namely H0 and H1. The H0

hypothesis considers the absence of a PU signal in the sensed
band, while the H1 hypothesis refers to the presence of a
PU signal in that same band. The two hypotheses can be
mathematically described as

y(t) =

{
w(t) + r(t), if H0

x(t)h(t) + w(t) + r(t), if H1

, (1)

where y(t) is the signal captured and analyzed by the CR, w(t)
and r(t) correspond to the thermal and impulsive noises in the
receiver, respectively, h(t) represents the gain or attenuation
caused by the communication channel, and x(t) is the PU
transmitted signal. A decision variable, TED, generated by
processing y(t), must be defined to decide about spectral
occupancy. This variable will depend on the sensing technique
and a decision threshold, λ. Thus, if TED > λ, it is decided
that the spectrum is occupied; otherwise, it is considered free.
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Figure 1. Simplified block diagram of the energy detection technique.

B. Energy Detection Technique

Several SS techniques are available, among which cycle-
stationary detection [8], matched-filter detection [9], and
eigenvalue-based detection [10] can be cited. However, due to
its low implementation complexity, ED is currently the most
widely used technique [11], [12]. It is considered an optimal
technique when no prior knowledge of the transmission signal
is available and the thermal noise is not a source of uncertainty.
In this technique, the detection of the presence or absence of
the signal is based on monitoring the energy measured in the
channel, compared to a decision threshold. Despite being a
well-established sensing technique, nowadays, it still attracts
considerable attention from researchers worldwide [13], [14].
Fig. 1 depicts a simplified block diagram for implementing
the ED technique in the time domain. Following the block
diagram shown in Fig. 1, a bandpass filter centered at the
frequency of the channel of interest is first used. Subsequently,
the filtered signal is down-converted to the baseband and
digitized by an analog-to-digital converter (ADC), generating
squared samples. The decision statistic, TED, is then calculated
according to

TED =

n∑
i=1

∣∣y(i)|2 , (2)

where n is the total number of collected samples and y(i) rep-
resents the i-th digitized sample collected by the CR. After the
calculation of TED, its value is compared with λ for decision-
making about which of the two hypotheses, H0 or H1, will be
considered. Disregarding the IN, in the presence or absence
of the primary signal, the decision variable has a chi-square
distribution with n degrees of freedom [15]. Considering a
sufficiently large number of samples, n, and using the central
limit theorem, this variable can be approximated to a Gaussian
random variable (RV), TED = N (nσ2

w, nσ
4
w) under hypothesis

H0 and TED = N (n(σ2
s +σ

2
w), n(σ

2
s +σ

2
w)

2) under hypothesis
H1, and thus, the average probabilities of false alarm and
detection can be numerically found, respectively, as

Pfa = Q

(
λ− nσ2

w√
nσ4

w

)
, (3)

Pd = Q

(
λ− n(σ2

s + σ2
w)√

n(σ2
s + σ2

w)
2

)
, (4)

where σ2
w and σ2

s are the noise and PU signal variances,
respectively and Q(·) is the Q-function, commonly used for
solving problems involving numerical integration of area in
Gaussian distributions.

Suppose the considered fading channel is of the Rayleigh
type under slow fading, modeling a radio mobile environment



with nLoS. In that case, the signal-to-noise ratio (SNR) will
vary randomly in each sensing period, exhibiting a statisti-
cal behavior described by an exponential probability density
function as fγ(γ) = 1

γ e
− γ

γ , where γ and γ refer to the
instantaneous and average SNRs, respectively. The average
detection probability is given in its integral form by

Pd =

∫ ∞

0

1

γ
e−

γ
γQ

λ− n (γ + 1)√
n (γ + 1)

2

 dγ. (5)

To define the threshold to be used, a constant false alarm
rate value is used, which can be calculated by isolating λ in
(3), and then

λ = σ2
w(Q

−1(Pfa)
√
n+ n). (6)

This work evaluates two approaches to the cooperative
version of the ED technique. Firstly, the sample fusion (SF),
in which all m CRs of the secondary network send their
collected samples from the sensing channel to an FC, where
they are used to compute a joint decision variable calculated in
a similar way to that in (2), but using samples from all CRs,
totaling m × n samples processed. Secondly, the majority-
rule decision fusion (DF), in which each CR sends only its
individual decision about the spectrum occupancy to an FC.
The majority rule has been chosen for the analyses in this
work because it provides a balanced approach. It provides
greater robustness against individual sensor errors compared to
the OR rule, reducing the probability of false positives while
being less stringent than the AND rule, which allows for an
increased probability of detection. If most decisions indicate
that the spectrum is occupied, the FC decides it is occupied;
otherwise, it is considered free.

CSS using SF is more complex to implement in practice
since it would require transmitting the samples to the FC at
a relatively high rate. On the other hand, the DF approach
would only require sending a single bit indicating spectrum
occupancy for each channel. The main idea of this work is to
evaluate the performance differences and trade-offs between
these two types of CSS under practical impairing conditions
in TVWS scenarios.

C. Impulsive Noise Modeling

Impulsive noise, often caused by sources such as electrical
switching, lightning, and engine ignition systems, can signif-
icantly degrade the performance of telecommunications and
SS systems. It introduces high-amplitude disturbances that can
interfere with signal detection and transmission. There are
several models available in the literature for characterizing
the IN. The IN model used in this work was proposed in
[16]. This model assumes that the number of IN pulses within
a given interval follows a Poisson distribution. The interval
between occurrences can be modeled using an exponential
distribution, given by f(t) = 1

β e
− 1

β t, where t ≥ 0 is the time
interval between consecutive pulses and β is the average time
separation between them. Thus, without loss of generality, a
random number with an exponential distribution of mean β

Figure 2. Impulsive noise plus thermal noise.

samples is used to calculate the number of samples between
two IN pulses.

The pulse amplitude follows a log-normal distribution [16].
Therefore, to generate the values of the IN amplitudes, a
Gaussian RV Z with mean A [dBµV] and standard deviation
B [dB] is generated. Then, the value Z = z [dBµV] is
converted to its form z[µV ] = 10

z[dBµV ]
20 .

The IN phase is modeled through an RV θ, with a uniform
distribution between (0, 2π]. Thus, knowing the magnitude z
and the phase θ of the IN samples, the in-phase and quadrature
components of the IN can be expressed as I = z cos(θ) and
Q = z sin(θ), respectively.

In real environments, not all samples will be contaminated
with IN, but all will be affected by thermal noise. Fig. 2 illus-
trates an example of IN generated from the before-mentioned
model, where the average pulse magnitude is A = 70 [dBµV],
with a standard deviation of B = 8.5 [dB], and β = 900. The
thermal noise power is 50 [dBµV], the sampling frequency is
30 kHz, and the total analysis time is two seconds, equivalent
to 60000 samples.

To incorporate IN into the context of CSS, we consider
creating three new parameters: i) K is the ratio between
the average powers of IN and thermal noises K = σ2

r /σ
2
w,

where σ2
r is the variance of the IN; ii) PIN is the probability

of occurrence of IN during a sensing period, modeled as a
Bernoulli RV; and iii) PCR is the percentage of CRs affected
by IN when it is present, modeled as a Binomial RV with
parameters m and PCR.

D. Primary User Signal in TV White Spaces

The PU signal considered in the SS simulations evaluated
in this work is an OFDM-type signal, fully compliant with
the ISDB-T/TB (Integrated Services Digital Broadcasting -
Terrestrial) TV standard, which is used in several countries,
including Japan, Brazil, Argentina, and others, whose charac-
teristics are detailed in the ABNT 15601 [17] standard and



Table I
OFDM ISDB-TB SYSTEM TRANSMISSION PARAMETERS

Parameter Value
Total number of carriers 8192 (Mode 3)
Number of active carriers 5617
Guard interval 1/16
Number of segments Layer A 13
Data carriers modulation Layer A 64-QAM
Encoding rate of layer A 7/8
Pilot carriers and TMCC modulation BPSK/DBPSK
OFDM symbol duration 1.26 ms
Subcarrier spacing 0.992 kHz
Pilot spacing 11.9 kHz
IFFT clock 512/63 MHz
Bandwidth 5.572 MHz

can be mathematically described by

x(t) =

∞∑
s=0

KT−1∑
k=0

cs,kψ(s, k, t), (7)

where

ψ(s, k, t)=

{
ej2π

k−Kc
Tu

(t−Tg−sTs) sTs ≤ t < (s+ 1)Ts

0 t < sTs, t ≥ (s+ 1)Ts
(8)

in which k is the index of the carrier, which is successive for
the entire band, with the number 0 assigned to carrier 0 of
segment 11; s is the symbol number; KT represents the total
carriers of the mode; Ts is the duration time of the OFDM
symbol; Tg is the duration time of the guard interval; Tu is
the duration time of the useful part of the symbol; fc is the
center frequency of the PU signal; Kc is the carrier number
corresponding to the center frequency of the signal; and cs,k is
the corresponding complex serial symbol to the OFDM symbol
with index s and carrier index k.

III. DEVELOPMENTS OF SIMULATIONS

A. Generation of Primary User Signal in TVWS

Before starting the development of SS simulations with
a focus on TVWS usage, an OFDM signal in compliance
with the characteristics of a typical ISDB-TB transmission
signal was implemented in MATLAB. Table I presents the
parameters used in implementing the OFDM signal, which will
be incorporated into the SS simulations. The generated signal
has a usable bandwidth of 5.57 MHz, as per the ISDB-TB
standard, as shown in Fig. 3, which displays the magnitude
of power spectrum density of the generated OFDM signal. As
expected by the standard, the entire signal is confined within
the −3 MHz to 3 MHz bandwidth, with a minor guard band
at the boundaries. The simulation did not convert the OFDM
signal to channel frequency because, in practical SS, the first
processing step is converting signals from channel frequency
to baseband.

B. Final SS Simulation in TVWS

MATLAB software simulation has been developed to es-
timate SS’s performance in a realistic TVWS scenario. The
PU transmission signal, x(t), is that presented in Subsection
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Figure 3. ISDB-TB PU signal power spectrum density.

III-A; the channel gain, h(t), is generated by random samples
with a Rayleigh distribution with unit variance, representing a
nLoS fading scenario between the CRs and PU; and the noise
considered, w(t), is the AWGN with zero mean and unitary
variance. The IN, r(t), is that described in Section II-C. The
sampling frequency used in the simulation is set to match
the IFFT clock value indicated in Table I, which ensures the
detection of all signal power within a 6 MHz channel. The
sensing technique considered is a cooperative version of ED
(SF and DF), described in Section II-B. Therefore, the decision
variable TED, used to define spectral occupancy, is calculated
as presented in (2).

The simulation developed has as its main input parameters
the number of CRs (m); the number of samples collected by
each CR (n); the number of primary transmitters (p); the mean
SNR; the number of Monte Carlo events of the simulation
(Ne); the ratio between the IN power and the power of thermal
noise present in the system (K); the probability of occurrence
of the IN (PIN); the average percentage of CRs affected by
the IN (PCR); the average spacing between IN samples (β);
the mean value of the log-normal IN amplitudes (A); and the
standard deviation of the log-normal IN amplitudes (B).

IV. NUMERICAL RESULTS

This section presents the performance results of SS in
various TVWS scenarios using the receiver operating char-
acteristic (ROC) curve and the area under the curve (AUC)
metrics. All performance curves presented in this section
were obtained through careful simulations developed on the
MATLAB software platform, according to section III-B, which
took into account 20000 Monte Carlo events (50% of the
events are considered under the hypothesis H0 and 50%
under hypothesis H1). The IN parameters, when present, are
highlighted in the presented performance figures.

A. Cooperative Performance in the absence and presence of
IN

To verify the performance of the CSS system in the presence
and the absence of IN, simulations with the following param-
eterization have been carried out: p = 1, n = 60, m = 6,
decision methods SF and DF, and SNR = −8 dB (with and
without IN) and −15 dB (with IN). The resulting ROC curves
and the AUC values obtained for each simulated case are
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Figure 4. ROC curves in the presence and the absence of IN.

presented in Fig. 4. The results shown in Fig. 4 indicate that
the presence of IN reduces performance compared to the case
without IN, regardless of the decision methods applied (SF
or DF). This reduction is evident as the ROC curves move
away from the optimal operating point (Pd = 1 and Pfa = 0),
and the AUC metric decreases. Additionally, the SF method
performs better than the DF in all evaluated cases. However,
the performance reduction between the DF and SF appears
to be less pronounced in scenarios with IN. For lower SNRs
(SNR = −15 dB), the performance of the two techniques
becomes quite similar.

B. Performance under IN for different numbers of CRs

To assess the influence of the number of CRs in a sce-
nario with IN and compare its impact on CSS and non-CSS
systems, a simulation has been performed with the following
parameterization: p = 1, n = 100, SNR = −10 dB,
decision methods SF and DF, and m = {1, 2, 4, 6, 8, 16}. Fig.
5 presents the ROC curves for each evaluated case. Fig. 5
shows that the cooperative approach offers notable advantages
in mitigating IN compared to a non-CSS system (m = 1)
for both SF and DF methods. However, as the number of
CRs in the system increases, it is observed that performance
gains tend to diminish, mainly considering low Pfa values.
In other words, increasing the number of CRs does not
significantly improve SS performance beyond a certain point.
This conclusion could be crucial in defining the ideal number
of CRs in the cooperative network, ensuring good performance
without excessively raising the network cost associated with
CR acquisition for sensing purposes. The results obtained with
SF and DF for m = 1 are practically the same since, in
both cases, the decision is based only on the samples of the
single considered CR. For other values of m, the SF method
performed better than the DF method for the considered level
of IN. For example, for m = 16, the AUC metric for SF is
0.861, while for DF is 0.813.
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Figure 5. ROC curves under IN for different values of m.

C. Performance under different IN parameters

The impact of IN parameters (K, PIN, PCR, and β) 1 on
the CSS have been evaluated. All simulations carried out in
this subsection have been performed considering a Rayleigh
channel and use the following fixed parameterization: p = 1,
n = 100, m = 6, decision methods SF and DF, and SNR =
−10 dB.

To evaluate the influence of IN intensity on the performance
of the sensing system, simulations have been conducted using
K = {0, 0.2, 2}. The resulting ROC curves and all simulation
parameters are presented in Fig. 6 (a). It can be seen that
increasing K results in a performance drop in SS because
the IN increases the uncertainty in the FC’s decision, which
translates into an increase in the probability of false alarms.
It is also observed that in the absence of IN (K = 0), the
SF method (AUC = 0.916) outperforms the DF technique
(AUC = 0.838). However, as K increases, this performance
difference decreases, and for a significantly high K value
(K = 2), the DF technique (AUC = 0.714) surpasses the
SF technique (AUC = 0.706) despite its simpler practical
implementation.

To interpret how the probability of occurrence of IN affects
the performance of the SS system using both fusion methods,
its value was varied in the simulation according to PIN =
{0, 0.2, 0.4}. Fig. 6 (b) presents the resulting ROC curves and
detailed parameters. As expected, increasing PIN reduces the
performance of the sensing system using either of the fusion
techniques. Once again, in the absence of IN (PIN = 0),
the SF technique outperforms the DF technique. However,
as the IN occurrence probability increases, the DF technique

1It is worth mentioning that the IN parameters A and B were also varied
in the simulations; however, they did not significantly affect the performance
of SS. We conjecture this occurs due to the normalization of IN power by
the K factor, which adjusts the IN power to be K times greater than that of
thermal noise, regardless of the selected values of A and B.
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Figure 6. ROC curves for different values of K (a), PIN (b), PCR (c), and β (d).

performs better than the SF technique. The ROC curves for the
SF technique exhibit interesting behavior when intense IN is
present in the system, such as when K = 1 occurs. The ROC
curves (solid blue and green) exhibit a sharp vertical drop
near Pfa = PIN, continuing to a point near Pfa = Pd = PIN.
This sharp vertical drop happens because when very intense
IN is present, the probability of false alarm approaches the
probability of detection for higher threshold values, indicating
operational infeasibility under these conditions. On the other
hand, while the DF technique also suffers degradation, it
maintains superior performance with a smoother decline in the
ROC curve. In particular, the DF technique’s SS performance
(AUC = 0.693) for PIN = 0.4 surpasses that of the SF
technique (AUC = 0.673).

To understand the impact of the percentage of CRs cor-
rupted when IN is present, this parameter was varied in the
simulation as follows: PCR = {0, 0.3, 0.6, 0.9}. The resulting

ROC curves and detailed information on the parameters used
are presented in Fig. 6 (c). It is observed that an increase
in PCR leads to a reduction in system performance for both
fusion techniques, as more collected samples processed at the
CRs (for DF) or at the FC (for SF) are corrupted by IN.
Another important conclusion that can be drawn from the
analysis of Fig. 6 (c) is that in situations where IN is present
(PCR ̸= 0), the lower the percentage of affected CRS, the
better the performance of the DF technique compared to the SF
method. For example, for PCR = 0.3, the AUC for SF is 0.751,
whereas for DF it is 0.796. This performance improvement can
be justified by the fact that in high-intensity IN situations (such
as the used K = 1), regardless of the number of CRs affected,
sensing is already compromised in the SF method since all
samples are considered for computing the final cooperative
decision variable TED. In contrast, in the DF technique, since



the decision on occupancy is made in favor of the majority
of individual decisions, if only a few CRs are corrupted by
intense IN, the decisions of the unaffected CRs can still lead
to an accurate SS decision.

Finally, the average distance between IN samples was varied
in the simulation according to β = {20, 40, 60, 80, 100}, and
the ROC curves are presented in Fig. 6 (d) along with the
other systemic parameters considered. By inspection of results,
it is possible to observe that the increase in β improves
system performance using both fusion techniques, which is
justifiable since, with the increase in the spacing between
IN samples, the effective number of IN pulses inserted into
the samples captured by the cooperative network’s CRs is
reduced. It is also observed that the set of curves generated
in the simulation using the SF method (solid curves) shows a
significant performance degradation for Pfa ≈ 0.3. In contrast,
the group of curves employing the DF technique achieves a
smoother decline in the ROC curves and a higher detection
probability for 0.1 < Pfa < 0.3. In all cases evaluated in
Fig. 6 (d), the DF technique provided a higher AUC value
than that achieved by the SF technique. The aforementioned
improvement demonstrates that although the DF technique is
simpler to implement due to not requiring the transmission of
all samples collected by the CRs in the cooperative network
to the CF, in several cases of intense external interference, the
DF technique provides superior performance compared to that
achieved by the SF fusion method, making it the more suitable
choice for this type of environment.

V. CONCLUSIONS

This work has advanced the study of CSS in TVWS
scenarios using two distinct cooperation methods: SF and DF.
Our study specifically has addressed a practical PU signal,
the ISDB-TB , under realistic disturbances such as Rayleigh
fading in the received signal, thermal noise, and IN. The
analyses have enabled a comprehensive comparison of several
scenarios, demonstrating the negative impact of IN on SS
performance. Additionally, it has been observed that increas-
ing the number of CRs leads to performance improvements,
although these gains diminish as the number of CRs increases.
We also have evaluated the impact of various IN parameters
on SS. Significant and non-obvious conclusions have been
drawn regarding the two considered fusion methods. It has
been found that in several situations, mainly those with high
IN power intensity but a low percentage of affected CRs, the
DF technique outperforms the SF technique despite its lower
implementation complexity. These understandings are critical

for optimizing SS strategies, helping to enhance the robustness
and reliability of CSS in TVWS.
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