Defect Detection in Printed Circuit Boards Based
on EdgeML and Computer Vision

Felipe G. F. Rocha', Hyago V. L. B. Silva', Rodrigo B. Vimieiro?, and Felipe A. P. Figueiredo'
'Wireless and Artificial Intelligence Laboratory, WAI Lab. - Inatel - Santa Rita do Sapucai, Brazil
2Sdo Carlos School of Engineering of the University of Sdo Paulo - Sdo Carlos, Brazil
email: [feliperocha, hyago.silva] @mtel.inatel.br, rodrigo.vimieiro@usp.br, felipe.figueiredo@inatel.br

Abstract—The production of electronic boards is a common
activity in the industrial environment, and ensuring their quality
is essential for obtaining reliable products. This work presents a
comparative study of the performance of three machine learning
architectures: YoloV8, FOMO, and MobileNet. The dataset was
created based on four classes for assembly fault detection. The
model that achieved the best results was FOMO, with precision,
recall, and F1-Score above 95%, as well as processing 10.5 frames
per second and having a total size of 152 kB.

Index Terms—Quality Control, PCB, Machine Learning, Deep
Learning.

I. INTRODUCTION

In the industrial environment, producing high-quality
Printed Circuit Boards (PCBs) is essential to ensure that a
reliable product reaches the end customer [1]. The quality
control department aims to ensure and enforce compliance
at each stage of the industrial process, in accordance with
pre-established standards. The department is responsible for
conducting functionality tests and visual inspections of prod-
ucts by sampling, a frequently manual task that relies on the
employee’s focus and interpretation. This can lead to human
errors or undetected defects that fall outside the sampling
[2]. The integration of Industry 4.0 technologies, such as the
Internet of Things (IoT), artificial intelligence (Al), and cloud
computing, plays an important role in optimizing and ensuring
reliability in processes [3|]. The technological capability of
machine learning models to process and analyze large volumes
of data and recognize patterns makes it possible to distinguish
between defective and non-defective PCBs accurately, detect
an unmounted or incorrectly mounted component, or even
identify defects in traces, such as open circuits or short circuits.
This technology makes sample-based inspections unnecessary,
as every produced board can be individually analyzed. This
work aims to investigate different convolutional neural net-
work architectures to characterize assembly defects in PCBs
within an industrial process.

This work was partially funded by Intelbras (Pré-Educar Program), by
CNPq (Grant Nos. 403612/2020-9, 311470/2021-1, and 403827/2021-3), by
Minas Gerais Research Foundation (FAPEMIG) (Grant Nos. APQ-00810-21,
APQ-03162-24, and PPE-00124-23), and by the projects XGM-AFCCT-2024-
2-5-1, and XGM-AFCCT-2024-9-1-1 supported by xGMobile — EMBRAPII-
Inatel Competence Center on 5G and 6G Networks, with financial resources
from the PPI IoT/Manufatura 4.0 from MCTI grant number 052/2023, signed
with EMBRAPIIL.

II. RELATED WORKS

In Githu’s work [4], machine learning (ML) concepts
are used to identify manufacturing defects in printed circuit
boards. In contrast, this article specifically focuses on identi-
fying faults during the assembly of electronic components, a
distinct area of application. Githu’s project used a Raspberry
Pi 4 and an 8-megapixel camera module to run three models:
MobileNetV2 SSD FPN-Lite 320x320 [5]], Edge Impulse’s
FOMO [6], and YOLOvS [7]], with FOMO being chosen
for its superior performance in detecting short circuits, open
circuits, and missing holes. Differently, our study considers
YOLOVS, a more advanced model, along with FOMO e
MobileNetv2 SSD FPN-Lite 320x320. Additionally, we apply
weight quantization to the studied models and assess its impact
on their performance, something not explored in Githu’s work.
Quantization allows optimization of both accuracy and per-
formance on more limited hardware. Moreover, a significant
contribution of our work is the creation of a specific dataset
for detecting assembly faults in PCBs.

Nguyen and Bui’s work [8] presents a study on PCB defect
inspection using deep learning techniques. Aiming to propose
an automated real-time supervision algorithm, the authors use
an enhanced ResNet-50 Convolutional Neural Network (CNN)
model that achieves an average accuracy rate of up to 96.29%
under good lighting and brightness conditions. The authors
do not consider the use of low-cost, low-power devices, and
the hardware used included a 5-megapixel webcam for image
capture, an NVIDIA Jetson Nano B0l development kit for
processing the proposed model, an Arduino Mega board,
motor driver modules, DC motors, and optical sensors for
conveyor belt control.

III. METHODOLOGY

Figure [I] illustrates the general methodology used in this
work. First, the target scenario for the ML model application
was determined. For this study, the industrial environment was
chosen. Second, the application was selected: quality control
of PCBs. Third, the dataset was determined. Finally, different
network architectures were investigated, and the results of each
were analyzed for the proposed problem.

A. Training dataset

Figure [2] illustrates the process of constructing the custom
dataset developed for this work. Initially, it was necessary

= 3 milssing
= CI_missing

o= v ©

- " GGk
Target Scenaria Quality Control in Dataset Creation and
Selection Industrial Processes Preprocessing

0

——

><‘ -
Results and Model Analysis Model
Discussions and Selection Training

Fig. 1: General methodology used in this work. A step-by-step
approach is detailed up to the final result.

Jw

Capturing PCB ‘ Image
Defects 4 Caollection
X Data
Final
D:::set :h Augmentation
e & @ roboflow
I - Q_missing c
= C1_missing ‘\;)}}} [=]
i - ci3 inv P ﬂgﬁ
= C19_inv + Rotation
EIP_:"E % + Aip

+ Brightness

Fig. 2: Dataset construction process divided into four steps.

to produce defective PCBs. A 3-megapixel resolution we-
bcam was used. The mapped defects included unmounted
and incorrectly mounted electronic components. Four classes
were defined: Q missing (unmounted transistor), CI missing
(unmounted ICs), C13 inv (incorrectly mounted C13 capac-
itor), and C19 inv (incorrectly mounted C19 capacitor). A
total of 240 images were collected. Some data augmentation
techniques were employed to increase sample diversity [9],
including image rotation, flipping, and brightness adjustments.
After these procedures, the dataset was expanded to 576
images, distributed as 504 for the training set, 48 for the
validation set, and 24 for the test set. In the end, each
class contained 240 examples. This exclusive dataset, created
specifically for the detection of assembly faults in electronic
components, is publicly available at [[10].

Fig. 3: Label of the CI-Missing class, highlighted by the
yellow circle. This class indicates a missing IC assembly.

Figure [3] illustrates a label of the CI missing class, marked
by the two yellow circles.

B. Employed Deep Learning Architectures

Different deep convolutional neural network architectures
were evaluated. The architectures are detailed below.

The first was YOLOV8 (You Only Look Once) [7]. YOLO
is a widely used model for object detection and image seg-
mentation due to its high speed and accuracy. In the proposed
work, training was conducted over 200 epochs.

Next, the FOMO (Faster Objects, More Objects) model [6]
was tested. Developed by the engineers at Edge Impulse [I1]],
the FOMO algorithm is used for real-time multiple object
detection. The model uses MobileNetV2 as the base for its
structure and, by default, performs a spatial reduction of 1/8
from input to output, cutting the MobileNet model at the
intermediate layer 6 ("block-6-expand-relu’). This architecture
was trained on the Edge Impulse platform with configurations
including 200 training epochs, a learning rate of 0.001, and a
batch size of 32.

Finally, the MobileNetV2 network [5] was evaluated. The
MobileNetV2 convolutional neural network architecture was
designed to be efficient regarding speed and computational
resource usage. For training this model, 30,000 epochs and a
batch size of 32 samples were used.

For all the mentioned architectures, the concept of transfer
learning was applied—a machine learning technique in which
a model developed for a specific task is reused as a starting
point for a model on a new task [12].

C. Proposed Application Architecture

The architecture of the proposed application can be seen in
Figure [It consists of a Logitech 1080p camera, which was
used to capture the images for the dataset and for deploying
the model, a Raspberry Pi model 4B, Cortex-A72, with 4 GB
of RAM and 32 GB of Flash memory. Notably, the dashboard
illustrated in the figure represents an enhancement planned for
future work and is not part of the current implementation.

Machina Leaming
Model

10805
Camera

e —H_=‘-—‘ =

nn

Raspberry Pi
48

Dashboard

Dashboard plannad for flbu wirk

Fig. 4: Proposed application architecture

IV. METRICS

Different metrics were applied to evaluate the performance
of the neural networks.

Precision quantifies the proportion of correct predictions in
relation to the total cases classified as positive. The formula
that defines it is as follows

Precision = — -~ (1)
IO = T p TP

where TP stands for true positive and FP for false positive.

The recall metric measures the proportion of positive ex-
amples that the model correctly identified in relation to all
examples that are actually positive and can be calculated using
the following formula

TP
Recall = m, (2)

where FN stands for false negative.

The F1-Score metric is the harmonic mean between preci-
sion and recall, determined by the following formula

(Precision * Recall)

F1-S =2 .
core - (Precision + Recall)

3)

The Mean Average Precision (mAP) parameter is obtained
by calculating each object class’s average of the AP (Average
Precision) metrics. The AP of a specific class represents the
average of correct detections the model returns up to a certain
point in the detection list [[13]. The formula for mAP is as
follows:

1 N
AP = —) AP;, 4
m N; 4)

where [V is the total number of classes, and AP; is the Average
Precision of the i-th class.

V. RESULTS

In this section, the models’ results are presented in terms
of performance metrics, such as precision, recall, F1-Score,
and mAP, and computational performance, including total
model size, CPU usage, RAM usage, and inference time. A
Raspberry Pi 4B, equipped with a Cortex-A72 processor, 4

TABLE I: YoloVS8 results

Size CPU RAM FPS Prec. Recall F1 mAP

Float 22 670
3 MB 30% MB 0,2 96,8% | 92,7% | 94,6% | 96,1%
Igt l\il}B 20% ijg 0,3 943% | 948% | 94,5% | 95,6%

Fig. 5: Confusion Matrix - YoloV§

GB of RAM, and 32 GB of Flash memory, was used to assess
the computational characteristics.

As shown in Table I the YOLOv8n float32 model per-
formed well after training, achieving a precision of 96.8%,
recall of 92.7%, F1-Score of 94.6%, and mAP of 96.1%.
Despite the high metrics, the computational performance of
the model was not favorable. The model had a total size of
22 MB, required 670 MB of RAM, utilized 30% of the CPU,
and achieved an inference rate of 0.2 frames per second.

Figure [5 presents the model’s confusion matrix, describing
its classification performance on the test dataset. Notably, there
was higher accuracy in the CI-Missing and Q-Missing classes,
followed by C13-INV and C19-INV.

The weight quantization technique from float32 to int8 (8
bits) was used to reduce computational demands. As a result,
the model size was reduced to 11 MB, RAM requirement
decreased to 550 MB, and CPU usage dropped to 20%.
Processing time improved to 0.3 frames per second. The
performance metrics for the quantized model were: precision
of 94.3%, recall of 94.8%, F1-Score of 94.5%, and mAP of
95.6%.

The FOMO float32 model achieved the following perfor-

TABLE II: FOMO results

Size CPU RAM FPS Prec. Recall F1 mAP
Fé"za‘ fBZ 25% ﬁg 10 | 97% | 99% | 98% | 99%
Ig‘ 1211) 20% ﬁg 20 | 97% | 9% | 98% | 99%

Fig. 6: Confusion Matrix - FOMO

TABLE III: MobileNetV?2 results

Size CPU RAM FPS Prec. Recall F1 mAP
F;O;‘t 1\}113 30% 13\;12 3 61% | 87.5% | 71.8% | 100%
I;‘ N?B 25%]3\,([)3 6 | 55% | 79% 65% | 65%

mance metrics: 97% precision, 99% recall, 98% F1-Score, and
99% mAP, as shown in Table Additionally, the model has
a size of 152 kB, requires 250 MB of RAM, uses 25% of
the CPU, and has an inference time of 95 milliseconds per
image, equivalent to approximately 10 frames per second. The
confusion matrix for this model is shown in Figure [6] where
it can be observed that the highest accuracies were for the
classes C13-INV and CI-Missing, followed by C19-INV and
Q-Missing.

With the quantized int8 model, the performance metrics
remained unchanged. In contrast, the model size decreased
to 91 kB, RAM requirement dropped to 230 MB, CPU
usage reduced to 20%, and inference time lowered to 50
milliseconds, resulting in 20 frames per second.

According to the data in Table the performance evalu-
ation metrics for the MobileNetV2 float32 model included a
precision of 61%, recall of 87.5%, F1-Score of 71.8%, and an
mAP of 100%. The model has a size of 11 MB, requires 350
MB of RAM, uses 30% of the CPU, and achieves an inference
capacity of 3 frames per second. The model’s confusion matrix
is presented in Figure

The quantized int8 model’s total size was reduced to 3 MB.
RAM requirement and CPU usage decreased to 300 MB and
25%, respectively. Inference capacity increased to 6 frames
per second.

The precision, recall, F1-Score, and mAP metrics were 55%,
79%, 65%, and 65%, respectively.

Comparing these results with those presented in reference
[4], it is evident that the performances differ. The main reason
for this difference lies in the variation of datasets used. While

Fig. 7: Confusion Matrix - MobileNetV?2

Githu’s work focuses on detecting specific defects in PCBs,
our dataset was specifically designed to identify assembly
faults in electronic components, resulting in different detection
challenges. Additionally, the image capture conditions and the
complexity of the defects may have influenced the differences
in results.

VI. DISCUSSIONS

As detailed in the previous section, the FOMO and
YOLOVS models demonstrated the best performances. How-
ever, FOMO stood out, with precision, recall, F1-Score, and
mAP metrics exceeding 97%. In contrast, the metrics of the
MobileNet model were notably lower.

The FOMO model also excelled due to its significantly
lower computational requirements. Its compact size and low
RAM and CPU demands make it ideal for low-capacity
devices. The model’s inference rate was also the fastest among
the three options tested, with the quantized model reaching 20
frames per second.

Structured with a convolutional architecture, the FOMO
model efficiently applies convolution operations across the
entire input data. In this context, convolution transforms the
input pixel matrix into a new matrix, enhancing essential
patterns and features.

The model’s architecture is based on MobileNetV2, with
an input layer containing 1,080,000 features. The best per-
formance was achieved when using the 8 layers of the base
model, i.e., cutting the base model at intermediate layer 8.

After this cutoff, a new 2D convolutional layer was intro-
duced. This layer consists of 32 filters, where each filter is
a small matrix used to process specific regions of the input.
The term ’kernel’ refers to the size of this filter matrix; in
this case, it is size 1, indicating a 1x1 convolution window.
The ReLLU activation function is applied after the convolution
operation, meaning negative values are transformed into zero
while positive values remain unchanged, helping introduce
non-linearities into the neural network. The final step includes

an additional 2D convolutional layer composed of 4 filters and
a kernel of size 1. The purpose of this layer is to provide the
final class to be detected.

VII. CONCLUSION

The proposed work investigated three machine-learning ar-
chitecture options for quality control in assembling electronic
boards in an industrial environment. The model that achieved
the best performance was FOMO. However, further testing
with different models is still necessary to achieve even better
results. Notably, the proposed methodology is not dependent
on a specific model, meaning that any architecture can be used
for object detection.

The pursuit of reduced computational resource consumption
expands the possibilities for application on low-capacity de-
vices, making the model more accessible. In this way, finding
sustainable solutions enabling process automation in small
businesses with limited resources contributes to operational
efficiency and promotes more economical and sustainable
practices.

Expanding the available dataset is essential to improving the
model’s effectiveness and robustness. Furthermore, conducting
tests in real industrial environments is crucial to validate the
model’s performance consistently. Due to the current scarcity
of available images, expanding the training set should be a
priority for future work. Additionally, developing a dashboard
capable of integrating with the Raspberry Pi processor is
necessary, allowing for the visualization of all classes detected
by the model in a connected and interactive manner.

REFERENCES

[1] J. Shen, N. Liu, and H. Sun, “Defect detection of printed circuit board
based on lightweight deep convolution network,” IET Image Processing,
vol. 14, no. 15, pp. 3932-3940, 2020.

[2] T. Khare, V. Bahel, and A. C. Phadke, “Pcb-fire: Automated classifica-
tion and fault detection in pcb,” in 2020 Third International Conference
on Multimedia Processing, Communication & Information Technology
(MPCIT). 1EEE, 2020, pp. 123-128.

[3] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank,
“The expected contribution of industry 4.0 technologies for industrial
performance,” International Journal of production economics, vol. 204,
pp. 383-394, 2018.

[4] S. Githu. Pcb defect detection with computer vision -
raspberry pi. [Online]. Available: https://docs.edgeimpulse.com/experts/
image- projects/pcb-defect-detection- with-computer- vision-raspberry-pi

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510-4520.

[6] E. Impulse. (2023, May) FOMO: Object detection
for constrained devices. [Online]. Available: https:
/ldocs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/
object-detection/fomo-object-detection- for-constrained-devices

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2016, pp. 779—
788.

[8] V.-T. Nguyen and H.-A. Bui, “A real-time defect detection in printed
circuit boards applying deep learning,” EUREKA: Physics and Engi-
neering,(2), pp. 143-153, 2022.

[9] S. Alexandrova, Z. Tatlock, and M. Cakmak, “Roboflow: A flow-based
visual programming language for mobile manipulation tasks,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 5537-5544.

[10]

[11]

[12]

[13]

RoboFlow, “Componentes com defeitos dataset,” 2024, acessado
em: Ol set. 2024. [Online]. Available: https://universe.roboflow.com/
masters- 5bgc5/componentes-com-defeitos

S. Hymel, C. Banbury, D. Situnayake, A. Elium, C. Ward, M. Kelcey,
M. Baaijens, M. Majchrzycki, J. Plunkett, D. Tischler, A. Grande,
L. Moreau, D. Maslov, A. Beavis, J. Jongboom, and V. J. Reddi, “Edge
impulse: An mlops platform for tiny machine learning,” 2023.

N. Agarwal, A. Sondhi, K. Chopra, and G. Singh, “Transfer learning:
Survey and classification,” in Smart Innovations in Communication
and Computational Sciences, S. Tiwari, M. C. Trivedi, K. K. Mishra,
A. Misra, K. K. Kumar, and E. Suryani, Eds. Singapore: Springer
Singapore, 2021, pp. 145-155.

S. Robertson, “A new interpretation of average precision,” in
Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, ser. SIGIR *08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
689—-690. [Online]. Available: https://doi.org/10.1145/1390334.1390453

https://docs.edgeimpulse.com/experts/image-projects/pcb-defect-detection-with-computer-vision-raspberry-pi
https://docs.edgeimpulse.com/experts/image-projects/pcb-defect-detection-with-computer-vision-raspberry-pi
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://docs.edgeimpulse.com/docs/edge-impulse-studio/learning-blocks/object-detection/fomo-object-detection-for-constrained-devices
https://universe.roboflow.com/masters-5bgc5/componentes-com-defeitos
https://universe.roboflow.com/masters-5bgc5/componentes-com-defeitos
https://doi.org/10.1145/1390334.1390453

	Introduction
	Related Works
	Methodology
	Training dataset
	Employed Deep Learning Architectures
	Proposed Application Architecture

	Metrics
	Results
	Discussions
	Conclusion
	References

