
Performance Evaluation of Edge Computing Object
Detection Models for Maritime Surveillance on a

Raspberry Pi
Hyago V. L. B. Silva, Felipe A. P. de Figueiredo, and Samuel B. Mafra

Instituto Nacional de Telecomunicações - Inatel
Santa Rita do Sapucaı́, Brazil

hyago.silva@mtel.inatel.br, [felipe.figueiredo, samuelbmafra]@inatel.br

Abstract—The exponential growth of maritime traffic has
introduced significant business opportunities while also pos-
ing unprecedented challenges for surveillance. Human-based
surveillance is increasingly inadequate for managing the volume
and complexity of maritime activities, necessitating innovative
solutions. Therefore, this study presents a comparative analysis
of five prominent object detection models applied to maritime
surveillance: FOMO, MobileNetV2 SSD, YOLOv5, YOLOv8, and
YOLOv10. By evaluating their performance metrics in maritime
environments, this research identifies the most suitable model for
specific applications. For instance, YOLOv8n and YOLOv10n ex-
cel in accuracy, making them ideal when precision is paramount,
irrespective of inference time and resource consumption. In
contrast, FOMO is preferable when resource efficiency and
shorter inference times are critical. YOLOv5n offers a balanced
approach between accuracy and inference speed, suitable for
scenarios requiring both performance and efficiency. This study
aims to identify the most appropriate object detection model
for an IoT-based maritime surveillance application focused on
vessel detection, thereby enhancing operational effectiveness and
decision-making. Additionally, this study proposes a novel dataset
with 4,998 annotated images of 10 different ship classes, further
contributing to the field.

Index Terms—Computer Vision, Object Detection, Internet of
Things, Artificial Intelligence, Maritime-Surveillance.

I. INTRODUCTION

With the surge in maritime activity, trade, and passenger
transportation, the demand for autonomous monitoring sys-
tems has increased significantly [1]. This necessity arises
from the limitations of manual monitoring, which relies on
human resources and is prone to errors. Traditionally, maritime
surveillance ground stations have been equipped with sensors
such as sonar, radar, and cameras. Leveraging cameras in
these locations presents an opportunity to develop intelligent
applications using Computer Vision (CV) techniques. Cameras
provide a cost-effective solution for low-energy applications,
especially when combined with efficient, fast, and robust de-
tection techniques on embedded systems with CV capabilities
[2], [3], [4].

CV-based embedded applications must be scalable to inte-
grate into different coastal areas, necessitating the adoption of
the Internet of Things (IoT). The IoT paradigm connects phys-
ical devices embedded with cameras and other components
to the Internet, enabling seamless data collection, exchange,
and processing. This technology offers several advantages in

the maritime context, including real-time surveillance, remote
control, and data-driven decision-making across numerous
locations simultaneously [5].

Edge Machine Learning (EdgeML), an emerging field at the
intersection of edge and embedded computing and machine
learning, offers promising solutions for cost and resource-
efficient object detection (OD) and tracking (OT) in maritime
surveillance tasks [6]. State-of-the-art OD and OT models can
be employed to identify, classify, and track a variety of objects
on the water’s surface, including ships, smaller vessels, and
even individual personnel [7]. Furthermore, they can be used
to distinguish between lawful operations and illicit activities,
such as smuggling, piracy, or unauthorized fishing, enabling
authorities to respond swiftly and effectively [8].

Integrating OD and OT models into existing maritime
surveillance systems can significantly enhance their capa-
bilities, ensuring comprehensive coverage, rapid alerts, re-
duced human workload, and improved decision-making for
human operators [9]. However, such models often exhibit high
computational complexity, necessitating expensive hardware
for efficient operation, which can hinder their deployment
on resource-constrained IoT devices. Fortunately, techniques
such as quantization can be employed to adapt these models
for use on devices with limited resources. These methods
reduce computational demands while maintaining the model’s
accuracy at an acceptable level [10].

Therefore, this study addresses the challenge of OD on
resource-limited IoT devices for maritime surveillance. The
study assesses and compares the performance of five OD
models: Faster Objects More Objects (FOMO), MobileNetV2
Single Shot Detector Feature Pyramid Network Lite (Mo-
bileNetV2 SSD FPN Lite), You Only Look Once v5 Nano
(YOLOv5n), YOLOv8n, and YOLOv10n in terms of detection
precision, frame processing speed, and resource usage. These
models and their quantized versions are embedded and tested
on a Raspberry Pi 4 with a simple RGB camera. The aim is
to identify the most effective model for specific requirements,
whether prioritizing processing speed, detection precision, or
a balanced approach between speed, precision, and resource
consumption. Additionally, this work also contributes a new
dataset with 4998 images of ten different ship classes to the
literature.



The remainder of the article is structured as follows. Section
II presents and discusses related works found in the literature.
Section III describes the methodology employed in this study.
Section IV presents and analyzes the results obtained from a
series of experiments. Finally, Section V concludes the study
with key insights and outlines potential directions for future
research.

II. RELATED WORKS

In [11], the authors utilize optimized versions of YOLOv4
for marine OD, covering a range of targets including ships,
submarines, marine animals, and infrastructure, and imple-
ment these models on three-edge devices. Despite being
very expensive, the Nvidia Jetson Xavier AGX showed the
best performance with an inference speed of 90 frames per
second (FPS) and a limited degradation of 2.4% in average
accuracy. On the other hand, the more economical but still
costly Kria KV260 AI Vision Kit performed less well but
with significantly lower power consumption. The Movidius
Myriad X Vision Process Unit (VPU) efficiently balanced
performance and energy efficiency. The work employed a
dataset comprising 10,000 annotated images split into 15
classes, which included not only various types of ships but
also other objects commonly found in marine environments.

In [12], YOLOv4 achieved a high mean Average Precision
(mAP) of 93.55% and a fast detection speed of 43 FPS in
detecting ship targets, outperforming other algorithms such as
Faster R-CNN, SSD, and YOLOv3. The customized data set,
consisting of 4,000 annotated images from nine categories of
ships, was used to train the model. Strategies such as K-means
clustering for optimizing prior bins, modifying the model
structure, and using mixups were crucial to improving the
algorithm’s performance and increasing prediction accuracy
and overall robustness. The proposed model was trained and
tested on the cloud and achieved good results. In conclusion,
the YOLOv4 algorithm has shown remarkable results in ship
target detection, with high accuracy, real-time performance,
and the ability to detect various categories of ships effectively.

In [13], the authors present an approach to ship detection
that combines YOLOv8 with MobileViTSF and GSConv to en-
hance accuracy and efficiency, particularly for detecting small
targets in complex environments. By integrating YOLOv8 with
MobileViTSF and replacing traditional convolution blocks
with GSConv blocks, the resulting model is lightweight yet
more accurate. The results demonstrate that the proposed
model outperforms several state-of-the-art models. The model
was trained and tested on a personal computer using a dataset
of 7,000 annotated images from six different types of ships.
Despite the model’s significant advancements, the authors
recommend future research to improve the detection of large
overlapping vessels and to embed the application on mobile
platforms.

In contrast to the aforementioned studies, this article com-
pares various state-of-the-art OD models, comparing their
detection performance, speed, and resource consumption on
a Raspberry Pi. The goal is to identify the optimal model for

constructing an embedded maritime surveillance solution that
balances precision, speed, and resource usage.

Regarding the first related work, which uses different expen-
sive edge devices equipped with powerful computational ca-
pabilities to analyze FPS, this article analyses the performance
of various models with and without quantization, focusing
on achieving the best performance on a cheap and resource-
limited device. Moreover, the dataset employed included ob-
jects other than ships. The second related work focuses on data
clustering techniques to improve YOLOv4’s performance. The
model is trained and validated on powerful cloud computing
resources without dealing with the model’s deployment on
embedded devices. In contrast, this study targets a more
restricted device, achieving scalable and good performance.

While the third related work focuses on model architecture
enhancements and accuracy improvements using high-powered
personal computers, our research emphasizes the practical
application of OD models on resource-constrained devices,
balancing speed, precision, and resource consumption. Addi-
tionally, this work differs from related ones in that the dataset
used in this study is novel and contains only annotated images
of ships, which can help further research studies.

III. METHODOLOGY

This section presents the methodology employed to select
and compare the models. It describes the database used,
motivates the choice of models, the device used, and the
metrics adopted for comparing the models. All the code related
to this study is available on github1.

A. Dataset

The annotated dataset created especially for this study is
stored at the Roboflow Universe [14] and contains 4998
images and ten ship classes. The classes are Bulk Carrier,
Container Ship, General Cargo, Oil Product Tanker, Passenger
Ship, Tanker, Trawler, Tug, Vehicle Carrier, Yacht, and Back-
ground. The number of samples for each class is balanced.
The dataset was divided into 70% images for training, 20%
for validation, and 10% for testing. The size of the images is
416 pixels in width and height.

B. Models

This section briefly describes the five models assessed in this
work. In this study, we carefully selected five object detection
models, each representing a balance between complexity, size,
and efficiency, to evaluate their performance on a resource-
limited device. Our goal was to assess a range of models
from the most lightweight and efficient to those that are
more complex and state-of-the-art, ensuring a comprehensive
analysis for embedded maritime surveillance applications.

1https://github.com/HyAgOsK/DetecShipsAtechMultpleModels (available
after publication)



1) FOMO: It is a lightweight OD model designed by Edge
Impulse for low-capacity devices. Utilizing the MobileNetV2
architecture, it classifies 8x8 pixel cells with 1x1 convolution
and softmax activation, identifying objects by their centroids
instead of using bounding boxes [15]. This approach simplifies
the tracking of similarly sized, well-spaced objects. However,
it is not effective for varying object sizes. Additionally, the
mAP metric can not be computed due to its lack of bounding
box predictions [16].

2) MobileNetV2 SSD FPN Lite 320x320: It is a single-
stage OD model designed for mobile and embedded devices
[17]. It is a lightweight CNN known for its efficiency in terms
of speed and size. This model employs the FPN technique,
which improves accuracy by combining features from different
network layers. The ”Lite” in its name indicates that this is
a smaller and faster version of FPN designed for resource-
constrained devices [18].

3) YOLOv5n: It was developed by Ultralytics and is a
scalable, state-of-the-art OD model known for its exceptional
speed and accuracy in object detection [19]. Built on PyTorch
and trained on the COCO 2017 dataset, it offers versatile
export options for various applications [19]. The YOLOv5n
version is a smaller, lighter variant with only 1.9 million
parameters, making it suitable for ultra-light mobile solutions
and resource-constrained embedded devices.

4) YOLOv8n: It was also developed by Ultralytics and is
a state-of-the-art object detection model built on YOLOv5
with improved feature extraction [20]. The lightweight nano
version, YOLOv5n, with approximately 3.5 million parame-
ters, is suitable for mobile and embedded devices. YOLOv8
utilizes anchor boxes for accurate bounding box predictions
and supports object tracking, making it ideal for surveillance
and traffic monitoring while balancing accuracy and efficiency
across various tasks.

5) YOLOv10n: It was developed by the Multimedia Intel-
ligence Group at Tsinghua University. It is the latest iteration
of the YOLO series, featuring notable advancements in size,
accuracy, and speed [21]. It presents a significant leap forward
with non-maximum suppression (NMS)-free training, spatial-
channel decoupled downsampling, and large-kernel convolu-
tions. Although supporting multiple export formats like ONNX
and CoreML, YOLOv10 still lacks support for TensorFlow
Lite (TFLite), limiting its applicability in certain mobile and
embedded applications.

It is important to highlight that these models were trained
on the cloud, either on Edge Impulse [15] or on Google
Colaboratory [22], and inference is conducted on a Raspberry
Pi device. The FOMO model was trained on Edge Impulse,
while MobileNetv2 SSD FPN Lite, YOLOv5n, YOLOv8n,
and YOLOv10n models were trained on Google Colaboratory.
After training, the saved models are loaded into the Raspberry
Pi for validation (i.e., inference).

The selected models were also trained using quantization
to reduce their computational burden on resource-constrained
devices such as the Raspberry Pi 4. Quantization decreases
model size by converting parameters from high-precision types

Figure 1. Flowchart of study’s setup and its components.

(32-bit floating-point) to lower-precision types (16-bit floating-
point or 8-bit integers). This optimization reduces CPU and
RAM usage and increases FPS during detections [23].

C. Device

For this study, we used a Raspberry Pi 4 Model B as a
proof of concept. The device is configured with 4 GB of
LPDDR4 RAM and a quad-core 64-bit ARM Cortex-A72 CPU
running at 1.5 GHz. It is powered by a 5V / 3A USB Type-
C power supply. An attached TEDGE 720p High Definition
(HD) camera, connected via a USB-B cable, captures video
in real-time and sends the data to the Raspberry Pi 4B for
processing by the OD models. All processing is conducted
on the CPU, as the device lacks a dedicated graphics card or
hardware accelerator for image processing. Figure 1 illustrates
the setup configuration.

D. Metrics

The selected models were evaluated based on several key
performance metrics, including inference speed (measured in
FPS), CPU and RAM usage, model size, mAP, precision,
recall, and F1-score. These criteria provide a comprehensive
assessment of each model’s efficiency and accuracy, partic-
ularly in the context of deployment on resource-constrained
devices. These metrics were obtained by running the saved
models on the Raspberry Pi 4. FPS is calculated by measuring
the total inference time for each image. CPU and RAM usage
were monitored in real-time through the Linux terminal using
the htop command. While mAP, precision, recall and F1-score
were measured based on the test set.

IV. RESULTS AND DISCUSSIONS

In this section, we present the results of our comparative
analysis, focusing on the impact of model quantization on
resource utilization and performance metrics. Table I provides
a comprehensive overview of each model’s quantization level
and its effects on CPU and RAM consumption, FPS, and accu-
racy measures such as mAP, precision, recall, and F1-score2.
The data highlights how varying levels of model quantization
influence resource efficiency and detection performance, with
notable differences in RAM and CPU usage, and FPS. This
analysis is crucial for understanding the trade-offs involved
in deploying object detection models on resource-constrained
devices.

2As of the writing of this work, YOLOv10 does not support quantization
yet.



Table I
MODELS’ METRICS.

Model Type FPS CPU RAM mAP Precision Recall F1-
score

Size

FOMO float32 50 13% 150 MB - 58% 74% 64% 83 kB
int8 60 12% 110 MB - 57% 72% 64% 55 kB

MobileNetV2 SSD FPN Lite 320x320 float32 5 32% 500 MB 84% 90% 82% 86% 10.9 MB
int8 7 30% 400 MB 82% 85% 82% 83% 3.58 MB

YOLOv5n
float32 2 71% 860 MB 91% 93% 81% 87% 3.63 MB
float16 5 65% 800 MB 91% 92% 80% 86% 3.48 MB
int8 6 15% 210 MB 83% 80% 70% 75% 2 MB

YOLOV8n

float32 2.3 25% 450 MB 93.1% 89% 88% 88% 11.89 MB
float16 2.9 23% 410 MB 92% 85% 88% 86% 5.99 MB
int8 3 20% 400 MB 91% 86% 89% 87% 3.1 MB

YOLOV10n float32 1 90% 500 MB 92.7% 87% 90% 88% 5.6 MB

Based on the results presented in Table I, several key obser-
vations can be made regarding FPS and resource usage. FOMO
achieves the highest FPS, especially in its int8 quantized
form (60 FPS), while maintaining the lowest CPU (12%) and
RAM usage (110 MB). This makes it extremely efficient for
resource-constrained devices and applications requiring high
FPA, such as real-time ones. In comparison, MobileNetV2
SSD FPN Lite 320x320 has moderate FPS (7 for int8), with
relatively higher CPU (30%) and RAM (400 MB) usage com-
pared to FOMO. It performs well in terms of mAP (82%) and
precision (85%). YOLOv5n offers lower FPS (6 for int8) but
achieves high mAP (91% for float32/float16) and the highest
precision (93% for float32). The int8 version significantly
reduces CPU (15%) and RAM (210 MB) usage, making it
more efficient. YOLOv8n provides a balanced performance
with moderate FPS (3 for int8) and lower CPU (20%) and
RAM (400 MB) usage than YOLOv5n. It maintains high mAP
(93.1% and 92% for float32/float16) and F1-score (88% for
float32). YOLOv10n exhibits the lowest FPS (1 for float32)
and the highest CPU usage (90%), but achieves high mAP
(92.7%) and F1-score (88%). It is less efficient in terms
of resource consumption, making it less suitable for highly
resource-constrained environments.

It should be underscored that part of the consumption of
resources (i.e., CPU and RAM) is due to video processing,
especially because an HD camera was employed in this study.
Therefore, it might be reduced if cameras with lower resolution
are used. However, there might be a trade-off between image
resolution and the precision achieved by the OD models.

Regarding accuracy and precision, YOLOv8n and
YOLOv10n stand out with the highest mAP (93.1-92.7%)
and precision (89-87%), demonstrating superior detection
accuracy. YOLOv5n also shows strong performance in
accuracy metrics with a high mAP (91% for float32) and
F1-score (87% for float32). FOMO and MobileNetV2 SSD
FPN Lite 320x320 exhibit lower performance across mAP,
precision, recall, and F1-score metrics.

Quantization generally improves FPS and reduces resource
consumption (CPU and RAM) at the expense of slight reduc-
tions in mAP, precision, recall, and F1-score. This trade-off is
particularly evident in models like YOLOv5n and YOLOv8n,
where int8 quantization significantly enhances efficiency.

In terms of model size, FOMO is extremely compact,
especially in its int8 version (55 kB), making it ideal for
devices with very limited storage. The YOLO models, even in
their quantized forms, maintain reasonable sizes (2-3.1 MB),
effectively balancing performance and storage requirements.
There is a clear correlation between model size and FPS:
the larger the model, the slower its processing speed. This
connection arises from the number of parameters each model
contains, which dictates the amount of computation required.
Therefore, models with more parameters impose a higher
processing burden.

Among all assessed models, YOLOv5n offers a well-
rounded combination of moderate to high accuracy, efficient
resource usage, and acceptable FPS, making it the most
consistent model. YOLOv8n is the second most consistent
model and has the additional advantage of also being an object
tracker, which renders it an important part of future intelligent
maritime surveillance solutions.

However, the choice of model depends on the specific ap-
plication requirements. FOMO excels in environments where
speed and resource efficiency are critical, while YOLO models
(especially YOLOv5n and YOLOv10n) offer superior accu-
racy for applications that can accommodate higher resource
consumption. Quantization proves to be a valuable technique
for enhancing efficiency across all models where it is possible.

Figures 2, 3, 4, and 5 show the Precision-Recall curves with
the mAP metric for an Intersection over Union (IoU) of 0.5
for all models except FOMO in the float32 version. The curve
is not available for the FOMO model as it does not provide
bounding boxes [24].

As observed in these figures, although some models perform
slightly better than others, the worst-performing classes are Oil
Product Tanker and Tanker. The similarity between these two
classes poses a challenge for the models, making it difficult
to distinguish and classify them accurately. To address the
misclassification of these two similar classes, some strategies
can be employed. Increasing training data and using data aug-
mentation can improve model differentiation. Post-processing
techniques, such as model ensembles, can refine predictions.

On the other hand, the best-performing classes are container
ship, passenger ship, trawler, tug, vehicle carrier, and yacht.
Their curves are well above the average of all individual



Figure 2. Precision-recall curve of MobileNetV2 SSD FPN Lite 320x320 for
its float32 version.

Figure 3. Precision-recall curve of YOLOv5n for its float32 version.

precision-recall curves while the classes bulk carrier and
general cargo perform on average. For the latter two classes,
the same strategies mentioned before can be tried.

For this study, maritime surveillance applications do not
require high FPS rates due to the slow nature of most vessels.
YOLOv5n and YOLOv8n are the most suitable models for
vessel detection. This is attributed to their high accuracy,
reasonable FPS rate, and moderate resource consumption.
However, YOLOv8n is favored because it offers an additional
advantage: the possibility of tracking objects with state-of-the-
art algorithms.

Figure 4. Precision-recall curve of YOLOv8n for its float32 version.

Figure 5. Precision-recall curve of YOLOv10n for its float32 version.

V. CONCLUSIONS

This study conducted a comparative analysis of five promi-
nent object detection models (FOMO, MobileNetV2 SSD,
YOLOv5n, YOLOv8n, and YOLOv10n) to determine their
suitability for IoT-based maritime surveillance applications. By
evaluating their performance in terms of accuracy, inference
speed, and resource consumption, we identified models that
best meet specific operational requirements.

Our findings highlight that FOMO is highly efficient in
terms of FPS (up to 60 FPS) and resource consumption,
making it ideal for applications requiring real-time processing
with very limited computational resources, though it sacrifices



some accuracy and does not support bounding box predictions.
MobileNetV2 SSD FPN Lite strikes a balance between speed
and accuracy, offering moderate FPS (7 for int8 quantized
version) and good mAP (82%), making it suitable for resource-
constrained devices where moderate accuracy is acceptable.

YOLOv5n achieves high accuracy (mAP of 91% for float32)
with a reasonable trade-off in FPS and resource consumption
when quantized. It offers a balanced approach, suitable for
scenarios requiring both precision and efficiency. YOLOv8n
delivers high accuracy (mAP of 93.1% for float32) with mod-
erate resource consumption, making it ideal for applications
where accuracy is paramount and resources allow for slightly
higher computational demand.

YOLOv10n shows the highest accuracy and F1-score and
slightly lower mAP than YOLOv8n. However, it comes at
the expense of significantly higher resource consumption and
lower FPS, which might limit its use in highly resource-
constrained environments. Overall, YOLOv5n emerged as the
most balanced model, providing a good compromise between
accuracy, speed, and resource usage. YOLOv8n is also a strong
contender, especially for applications where tracking capabil-
ities are beneficial, such as maritime, vehicle, and pedestrian
surveillance and smart cities. Quantization proved effective in
enhancing the efficiency of all applicable models, making them
more suitable for deployment on resource-limited IoT devices.

Future research should focus on developing an embedded
intelligent maritime solution and further optimizing these
models for embedded systems, exploring additional techniques
such as pruning and knowledge distillation to reduce com-
putational demands. Additionally, expanding the dataset with
more diverse and complex maritime scenarios will help refine
these models further to ensure robust performance in real-
world applications. Moreover, libraries such as PyArmNN
[25], which offers an API optimized to run neural network
models on ARM CPUs, and hardware accelerators, such as
Google’s Coral USB [26], can help reduce the processing time,
increasing the processed FPS.

VI. ACKNOWLEDGMENTS

This work was partially funded by CNPq (Grant Nos.
403612/2020-9, 311470/2021-1, and 403827/2021-3), by Mi-
nas Gerais Research Foundation (FAPEMIG) (Grant Nos.
APQ-00810-21 and APQ-03162-24) and by the projects
XGM-AFCCT-2024-2-5-1 and XGM-AFCCT-2024-9-1-1 sup-
ported by xGMobile – EMBRAPII-Inatel Competence Center
on 5G and 6G Networks, with financial resources from the
PPI IoT/Manufatura 4.0 from MCTI grant number 052/2023,
signed with EMBRAPII.

REFERENCES

[1] K. Wang, M. Liang, Y. Li, J. Liu, and R. W. Liu, “Maritime traffic
data visualization: A brief review,” in 2019 IEEE 4th International
Conference on Big Data Analytics (ICBDA), pp. 67–72, IEEE, 2019.

[2] E. Teixeira, B. Araujo, V. Costa, S. Mafra, and F. Figueiredo, “Literature
review on ship localization, classification, and detection methods based
on optical sensors and neural networks,” Sensors, vol. 22, no. 18, 2022.

[3] R. d. L. Rocha and F. A. P. de Figueiredo, “Beyond land: A review
of benchmarking datasets, algorithms, and metrics for visual-based ship
tracking,” Electronics, vol. 12, no. 13, 2023.

[4] E. H. Teixeira, S. B. Mafra, and F. A. P. d. Figueiredo, “Inatechships:
A validation study of a novel ship dataset through deep learning-
based classification and detection models for maritime applications,”
ResearchGate Preprint, 2024.

[5] M. R. Cruz, E. H. Teixeira, S. Mafra, and F. A. P. d. Figueiredo,
“A multi-faceted approach to maritime security: Federated learning,
computer vision, and iot in edge computing,” 2023.

[6] R. Kaur and S. Singh, “A comprehensive review of object detection with
deep learning,” Digital Signal Processing, vol. 132, p. 103812, 2023.

[7] A. M. Rekavandi, L. Xu, F. Boussaid, A.-K. Seghouane, S. Hoefs,
and M. Bennamoun, “A guide to image and video based small object
detection using deep learning: Case study of maritime surveillance,”
arXiv preprint arXiv:2207.12926, 2022.

[8] J. Becerra, A. Ariza, and L. C. Gamarra-Amaya, “Use of open-source
satellite data to combat organized crime case study: Detection of vessels
associated with drug-trafficking,” in Space Fostering Latin American
Societies: Developing the Latin American Continent Through Space,
Part 2, pp. 67–86, Springer, 2021.

[9] A. Sepehri, H. R. Vandchali, A. W. Siddiqui, and J. Montewka, “The
impact of shipping 4.0 on controlling shipping accidents: A systematic
literature review,” Ocean engineering, vol. 243, p. 110162, 2022.

[10] D. Situnayake and J. Plunkett, AI at the Edge. ” O’Reilly Media, Inc.”,
2023.

[11] D. Heller, M. Rizk, R. Douguet, A. Baghdadi, and J.-P. Diguet, “Marine
objects detection using deep learning on embedded edge devices,” in
2022 IEEE International Workshop on Rapid System Prototyping (RSP),
pp. 1–7, IEEE, 2022.

[12] B. Wang, B. Han, and L. Yang, “Accurate real-time ship target detection
using yolov4,” in 2021 6th International Conference on Transportation
Information and Safety (ICTIS), pp. 222–227, 2021.

[13] X. Zhao and Y. Song, “Improved ship detection with yolov8 enhanced
with mobilevit and gsconv,” Electronics, vol. 12, no. 22, p. 4666, 2023.

[14] H. Vieira, “detectionship dataset.” https://universe.roboflow.com/hyago-
vieira/detectionship , apr 2024. visited on 2024-04-15.

[15] V. Janapa Reddi, A. Elium, S. Hymel, D. Tischler, D. Situnayake,
C. Ward, L. Moreau, J. Plunkett, M. Kelcey, M. Baaijens, et al., “Edge
impulse: An mlops platform for tiny machine learning,” Proceedings of
Machine Learning and Systems, vol. 5, 2023.

[16] L. Boyle, N. Baumann, S. Heo, and M. Magno, “Enhancing lightweight
neural networks for small object detection in iot applications,” in 2023
IEEE SENSORS, pp. 01–04, 2023.

[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 4510–4520, 2018.

[18] M. G. Naftali, J. S. Sulistyawan, and K. Julian, “Comparison of
object detection algorithms for street-level objects,” arXiv preprint
arXiv:2208.11315, 2022.

[19] G. Jocher, “YOLOv5 by Ultralytics,” May 2020.
[20] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics YOLO,” Jan. 2023.
[21] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding,

“Yolov10: Real-time end-to-end object detection,” arXiv preprint
arXiv:2405.14458, 2024.

[22] E. Bisong and E. Bisong, “Google colaboratory,” Building machine
learning and deep learning models on google cloud platform: a com-
prehensive guide for beginners, pp. 59–64, 2019.

[23] B. Rokh, A. Azarpeyvand, and A. Khanteymoori, “A comprehensive
survey on model quantization for deep neural networks,” arXiv preprint
arXiv:2205.07877, 2022.

[24] S. Hymel, C. Banbury, D. Situnayake, A. Elium, C. Ward, M. Kelcey,
M. Baaijens, M. Majchrzycki, J. Plunkett, D. Tischler, et al., “Edge
impulse: An mlops platform for tiny machine learning,” arXiv preprint
arXiv:2212.03332, 2022.

[25] M. Abellán, S. Cuenca-Asensi, and D. Gutiérrez, “Acceleration of object
recognition algorithm on embedded platform,”

[26] A. Ghosh, S. A. Al Mahmud, T. I. R. Uday, and D. M. Farid, “Assistive
technology for visually impaired using tensor flow object detection
in raspberry pi and coral usb accelerator,” in 2020 IEEE Region 10
Symposium (TENSYMP), pp. 186–189, IEEE, 2020.


