The Cognitive Wireless Era: Al/ML as the Engine of Next Generation Communication Networks

I.F. AKYILDIZ

Georgia Institute of Technology ian@ece.gatech.edu

International Telecommunication Union (ITU) ianaky@itu.int

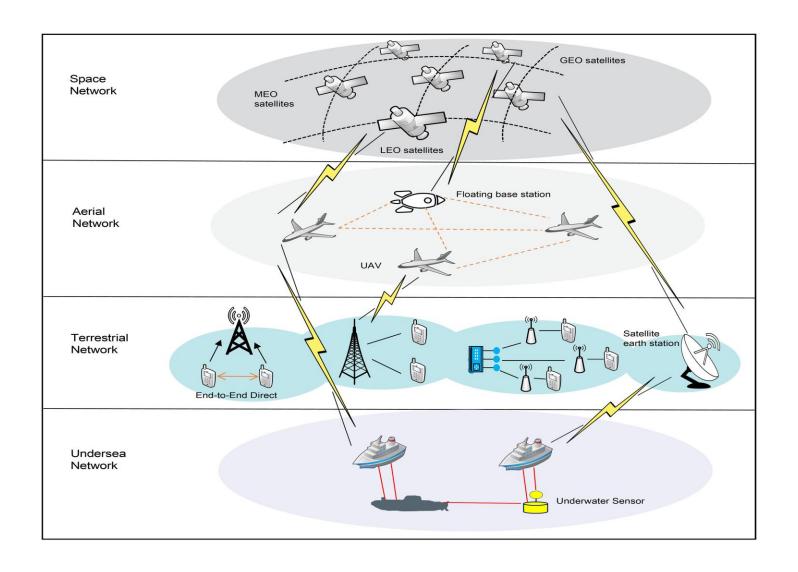
Brink of a New Era: From Reactive to Cognitive Networks

Al is not as a tool, but the fundamental fabric of this new, cognitive network.

"Cognitive Era" will transform society, healthcare, industry, and our relationship with technology.

WHY IS THIS TRANSITION CRUCIAL?

Economic Impact: Trillions in global GDP



 Societal Impact: Remote surgery, autonomous transportation, disaster response, environmental monitoring

 Geopolitical Impact: Leadership in 6G is leadership in the future digital economy.

GLOBAL NETWORK 3D COVERAGE

NETWORKING 2030-2040

Telepresence

- Conference
- Tourism
- Remote Assistance

Healthcare

- Remote Surgery
- Emergency Response
- Diagnosis & Patients Files

Education

- Remote Learning
- Virtual Labs

Automotive

- Autonomous Driving
- Driver Assistant
- Logistics
- Traffic Management

Entertainment

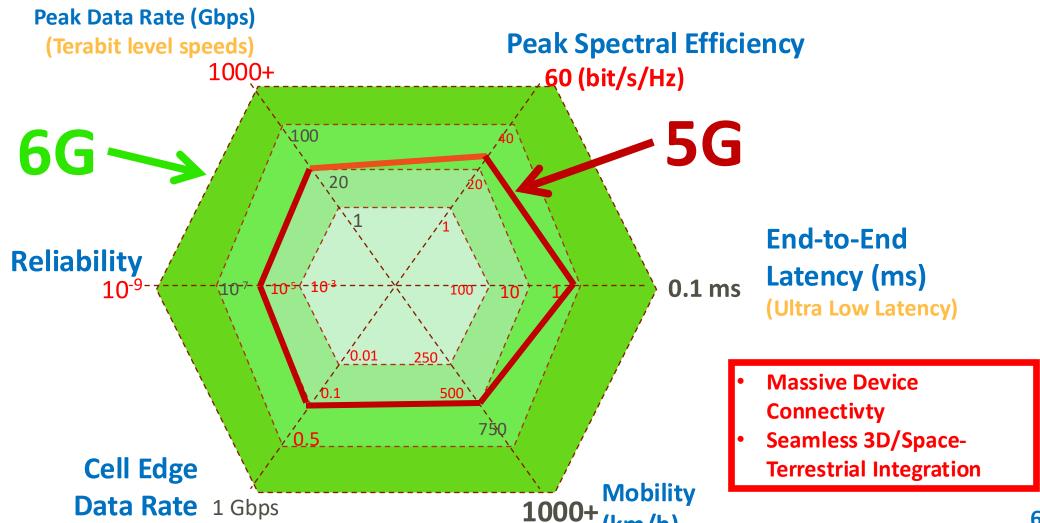
- Gaming
- SportsBroadcast

- Industrial Automation
- Manufacturing
- Robots
- UAVs/DRONES

NETWORK

Applications

6G/Beyond; ALL PARADIGMS (GLOBAL COVERAGE; 3D)


FUNDAMENTAL DESIGN PRINCIPLE

AI & ML

SECURITY/PRIVACY/SAFETY

EVOLUTION FROM 5G TO 6G

I. F. Akyildiz, A. Kak, S. Nie, "6G AND BEYOND: THE FUTURE OF WIRELESS COMMUNICATIONS SYSTEMS", **IEEE Access Journal, July 2020.**

(km/h)

Key Enabling Technologies for 6G and BEYOND

I. F. Akyildiz, A. Kak, S. Nie

"6G AND BEYOND: THE FUTURE OF Wireless Communication Systems",

IEEE Access Journal, Vol. 8, pp. 133995-134039, July 2020. **New Network TeraHertz Band ZERO TOUCH Architectures** Communication **NETWORK** (Pervasive AI/ML) **MANAGEMENT Integrated Communication Internet of Space** and Sensing Things (Satellites/CubeSats/UAVs Underwater Communication **SEMANTIC** COMMUNICATION 6G **METAVERSE; IMMERSIVE COM; DIGITAL TWINS; (MM, XR, HTC)** Intelligent Surfaces (Internet of Senses) Internet of Quantum **BioNano** Internet of (e.g., Brain-Computer **Communications** Things Interfaces (BCI)) **NanoThings**

FUTURE WIRELESS SYSTEMS VISION

- Industrial IoT
- mMTC

(10⁷ devices/km²)

SCALABILITY

- Tactile Internet
- Remote Surgery
- Quantum Comm.
- AutonomousSwarm Robotics

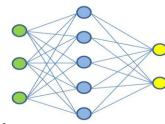
NEAR ZERO
LATENCY (<1ms)
END TO END LATENCY

- Holographic Streaming
- THz Bands
- Ultra Massive
 MIMO
- AI/ML
- SpectrumSharing

ULTRA HIGH SPEED (Tbps)
THROUGHPUT

AI/ML Foundation for optimizing all three pillars!

AI vs ML vs NN vs DL vs G-AI

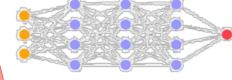

Generative Al

Human intelligence exhibited by machines

Algorithms that learn from data/experience

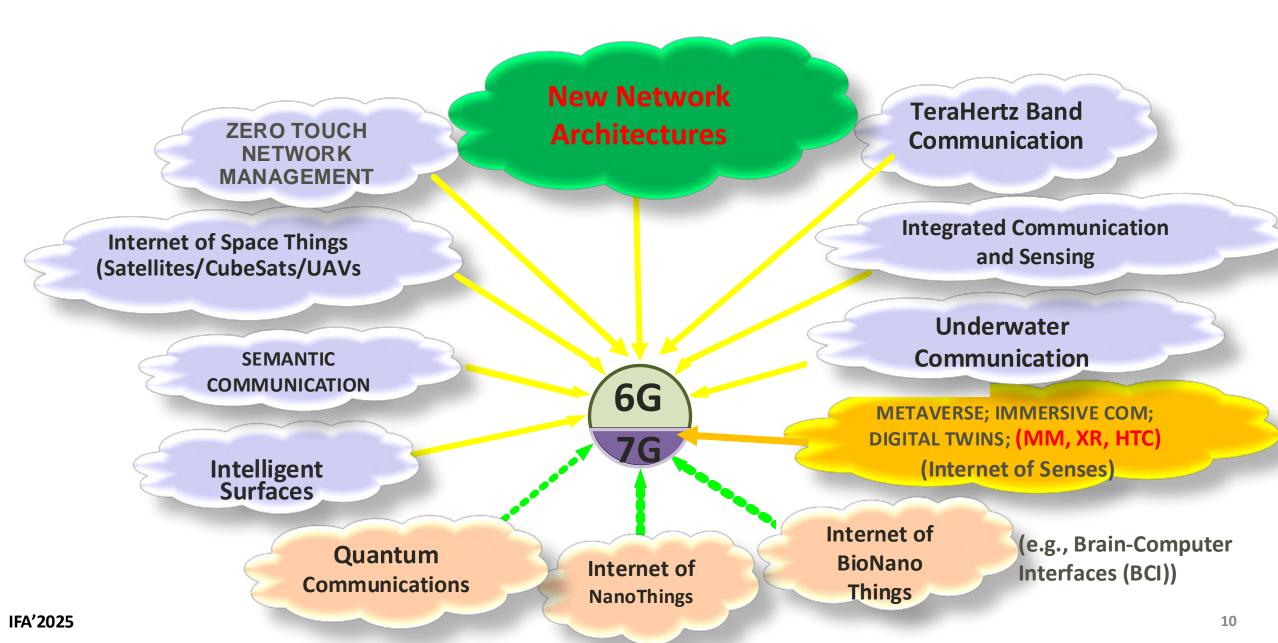
A subset of ML techniques inspired by biological (neurons) systems.

Organized in layers.



Machine Learning

Neural Networks


Deep Learning

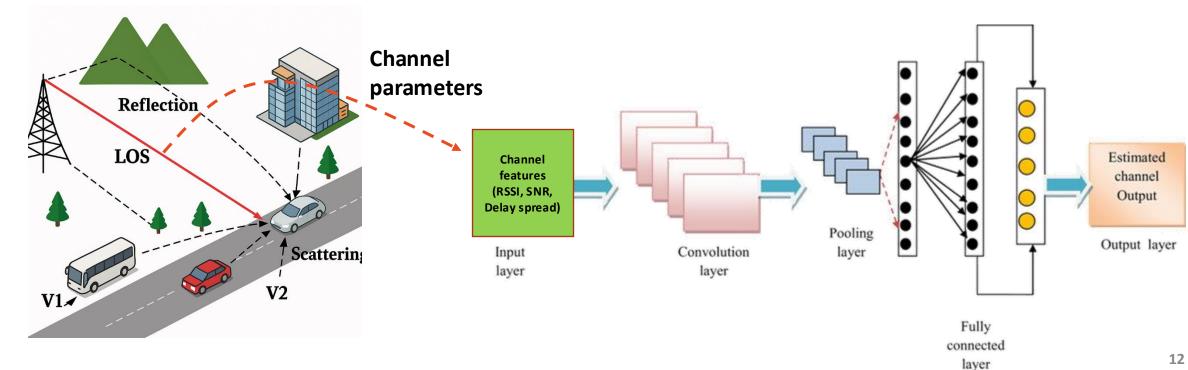
Multi-layered neural networks.

- Creates new, synthetic data patterns.
- A collection of DL algorithms that can generate human-like content

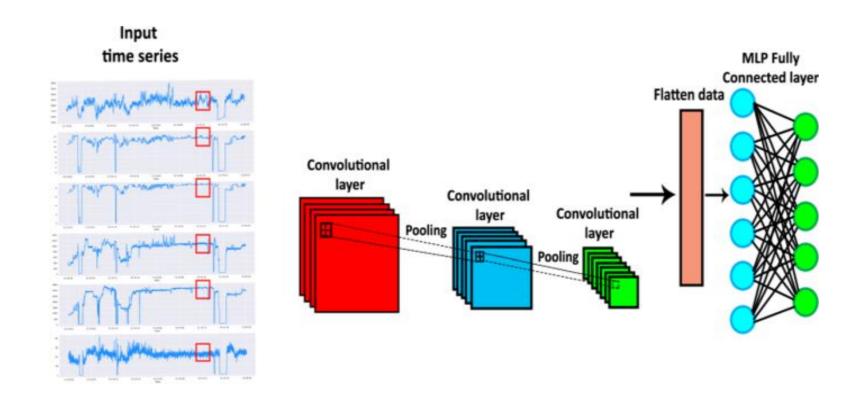
Al-Native as the Engine of NG Wireless Systems

CASE 1: The Al-Native Imperative: A Paradigm Shift

Why Old-School Methods Fail

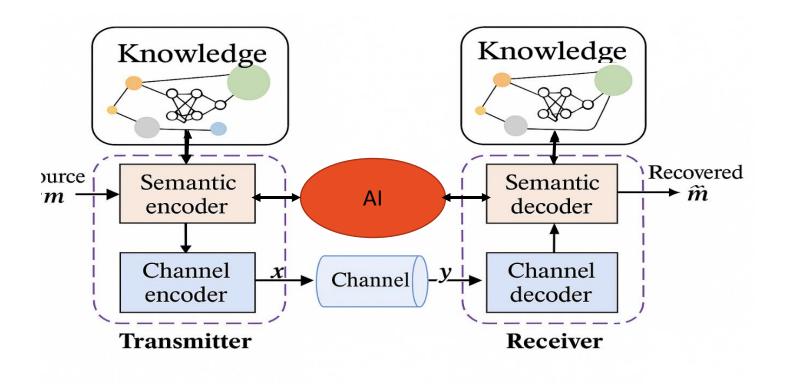

- Fixed rules and manual tuning
- Classical solutions struggle with scale, nonlinearity, non-stationary, partial observability and real-time constraints
- Future networks are dynamic, large-scale, orders of magnitude more complex, very fast, and highly unpredictable

How Al-Native Can Help

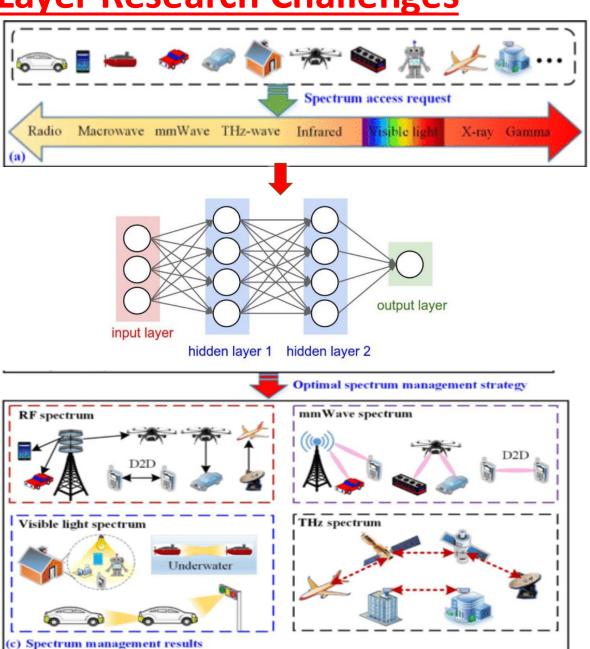

- AI is not an external add-on but is embedded within the functional fabric of all network layers (PHY, MAC, Network, Higher Layers).
- Enables real-time adaptation, handles massive data, and makes autonomous decisions.
- Delivers NWs that are smarter, more efficient, and more secure.
- AI-Native brings adaptability, speed, and intelligence making future networks smarter, greener, and more secure.

Channel Estimation & Optimal MCS Selection

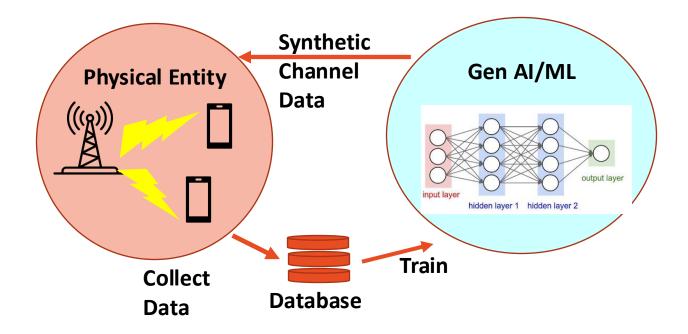
- **Convolutional Neural Networks (CNNs)**
- Recurrent Neural Networks (RNNs) (e.g., LSTMs)
- **Transformer Models**



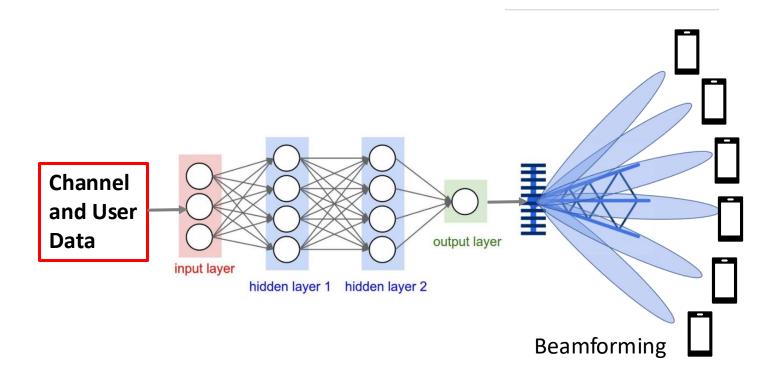
Time-series Signal Processing Hybrid CNN-RNN models


Semantic Communications

Al can extract meaning rather than just bits?


Spectrum & Energy Efficiency

- DL-based Spectrum Sensing & Sharing
- Power-Aware ML (predictive energy management for IoT devices)


AI-Generated Wireless Signals

GANs (Generative Adversarial NWs) may create synthetic but realistic channel data?

MIMO & Beamforming & Beam Management

- RNNs for MIMO
- RL for dynamic beam alignment
- FL for distributed beam optimization

Al-Native MAC Layer

Link Quality Prediction & Adaptation

RNNs (e.g., LSTM)

MAC Protocols Design

RL

self-optimizing contention windows, backoff mechanisms

Multiple KPIs for Fairness & QoS-Aware Scheduling & Resource Allocation → through RL

Transformers based Scheduling

(replacing heuristic schedulers in 5G/6G)

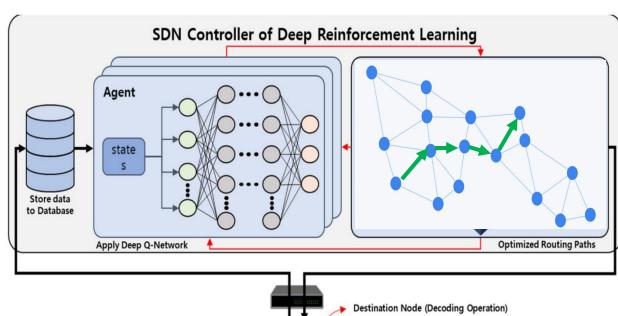
RESEARCH CHALLENGES

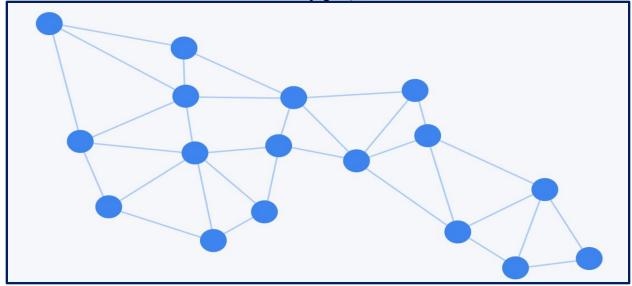
Deep Reinforcement Learning

- Predictive Scheduling & Resource Allocation
- Handover optimization
- HARQ
- Power Control

Multi-Agent RL (MARL)

- Distributed cooperative resource allocation among BSs, drones, and user devices
- Cooperative interference management in cellfree massive MIMO

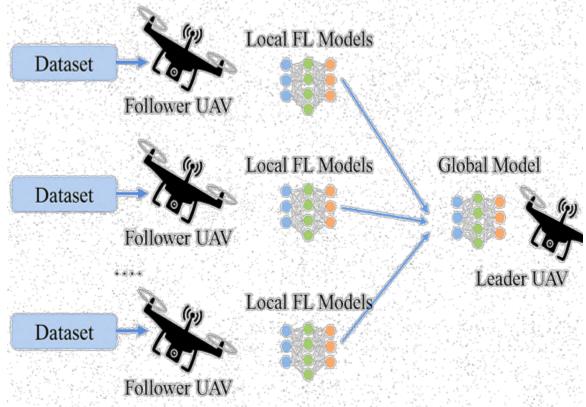

RNNs and GNNs


mobility management, in particular, handover prediction and risk-aware decision-making

Al-Native NW (ROUTING) Layer Research Challenges

DRL for Adaptive Routing:

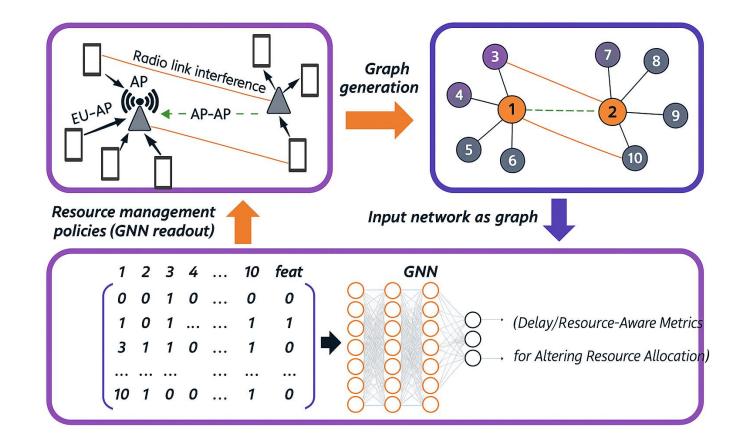
DRL agents at nodes learn optimal paths based on real-time conditions (latency, congestion, energy)



Al-Native NW (ROUTING) Layer Research Challenges

Federated Learning (FL):

Enables collaborative training of routing models across distributed nodes (drones, vehicles) without sharing raw data, preserving privacy and scalability.



IFA'2025 20

Al-Native NW (ROUTING) Layer Research Challenges

Graph Neural Networks (GNNs):

- Model network topology.
- Used for global path computation, congestion prediction, and dynamic network slicing by understanding relationships between nodes.

THE SCALABILITY PROBLEM

Can we build AI that is fast and efficient enough for the real world?

Real Time & Resource Constraints:

Running complex AI models (GPT) on resourceconstrained devices (sensors), e.g., URRLC (<1ms) Solutions:

- Edge computing with lightweight models (TinyML)
- Neuromorphic Computing

Data Scarcity & Generalization:

Al models require very large datasets but struggle to generalize Solution:

Techniques like transfer learning, metalearning, and synthetic data generation RESEARCH CHALLENGES

Energy Efficiency:

- High energy costs of large models (e.g., Transformers).
- Need Green AI !!

Solution:

Develop sparsity-aware NNs for energyefficient inference.

Hardware-Aware AI:

Co-design of algorithms & specialized HW for efficiency

THE TRUST PROBLEM

Can we trust the decisions these AI systems make?

Explainable AI (XAI) Develop Explainable AI (XAI)

Develop Explainable AI (XAI) techniques to debug and justify the decisions made by opaque "black-box" AI models, employing a hybrid symbolic-neural approach for greater transparency.

Trustworthy AI for Security & Robustness:

- Protecting ML systems against adversarial attacks
- Support interpretability or beamforming and resource allocation.

Ethics & Fairness:

Addressing bias, fairness, and accountability in Al-driven systems

Privacy:

Implement FL and differential privacy.

RESEARCH

CHALLENGES

THE INTEGRATION PROBLEM

Can we weave this new intelligence into our existing world?

Lack of Information Theory

that integrates computation & learning and determines fundamental limits of Al-native communication

HYBRID AI APPROACHES:

Combining model-based optimization with data-driven learning

HYBRID ENVIRONMENTS

Developing AI solutions that work across urban, rural, UW, and space environments Solution:

Use meta-learning for scalability & fast adaptation to new scenarios

Foundation Models:

Large Language Models pre-trained on massive, multi-modal network data

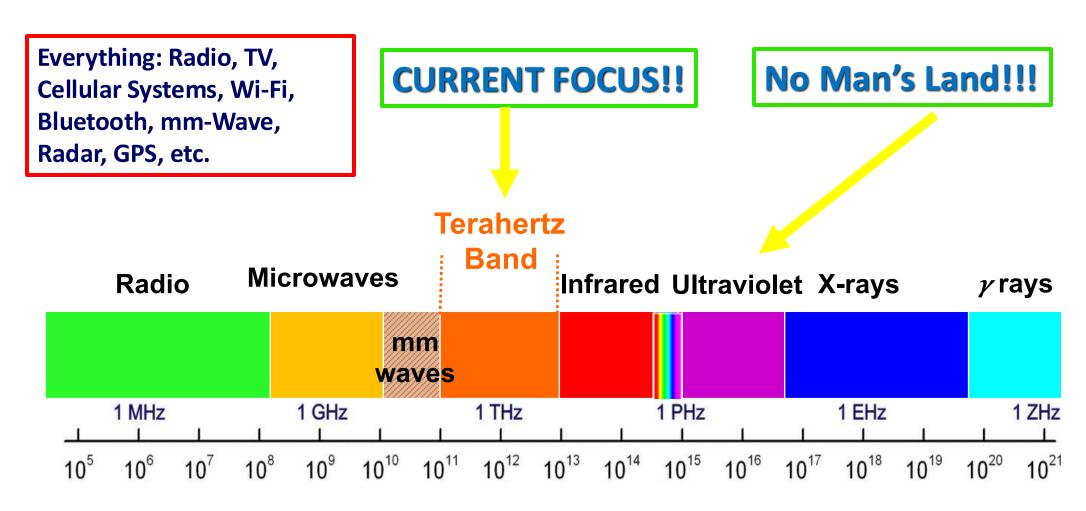
RESEARCH CHALLENGES

Legacy System Coexistence:

Enabling 5G/6G to work with legacy 4G systems

Standardization & Regulation & Interoperability

A lack of standardized AI interfaces hinders model sharing across vendors.


CASE 2: THZ BAND COMMUNICATION

```
I.F. Akyildiz, J. M. Jornet and C. Han,
"TERANETS: ULTRA-BROADBAND COMMUNICATION NETWORKS IN THE TERAHERTZ BAND,"
IEEE WIRELESS COMMUNICATIONS MAGAZINE, VOL. 21, NO. 4, PP. 130-135, AUGUST 2014.
I. F. Akyildiz, C. Han, Z. Hu, S. Nie, and J. M. Jornet,
"TeraHertz Band Communication: An Old Problem Revisited and Research Directions for the Next Decade", IEEE Transactions on Communications, June 2022.
```

- 6G REQUIREMENTS (Min End to End Latency; Very High Reliability; Very High Data Rates)
- Exponential growth of wireless data traffic:
 - More Devices → Multi-billion fixed-mobile-connected devices by 2025
 - Faster Connections

 Wireless data rates have doubled every 18 months over the last three decades
 - Wireless Terabit-per-second (Tbps) links will become a reality within the next 5 years
 → HOW??? → Explore high frequencies!!

CASE 2: THZ BAND COMMUNICATION

IFA'2025 17

TERANETS (formerly GRANET; 2008-2013):

"GRAPHENE BASED NANO SCALE COMMUNICATION NETWORKS IN THZ BAND"

NSF; US ARMY; FiDiPro; CATALUNA; HUMBOLDT; KACST, etc.. 2008-2013; 2013-2016 & 2016-2020; 2018-2022

Objectives:

- To demonstrate the feasibility of graphene-enabled EM communication
- To establish the theoretical foundations for EM nanonetwork
- To establish the theoretical and experimental foundations of ultra-broadband com nets in the (0.1-10) THz band

NANO Materials & Devices

- Nano-Transceivers√
- Nano-Antennas and Arrays √
- Fabrication
- Experimental Measurement

THz Channel

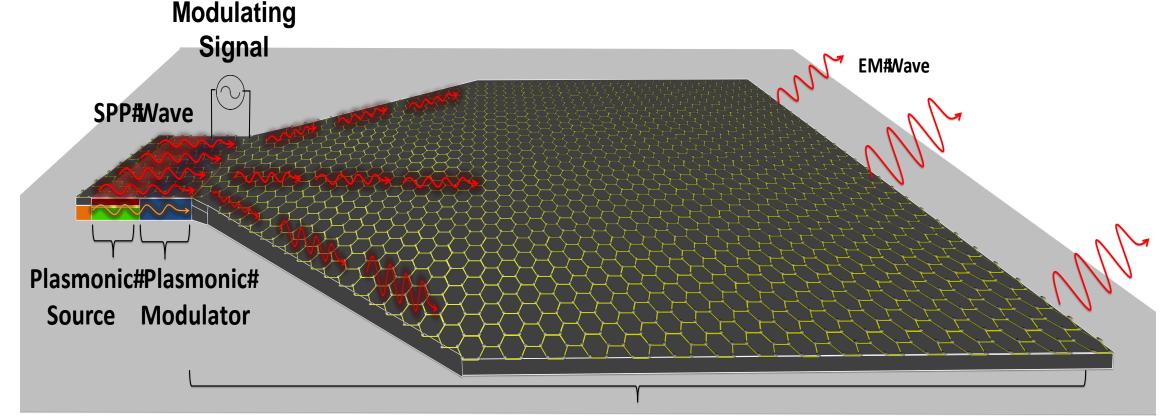
- Line-of-Sight √
- Multi-path √
- 3D End-to-End ✓
- Ultra-massive MIMO
- Noise Modeling √
- Capacity Analysis √
- Experimental Measurement

THz Communications

- Pulse-based Modulation √
- Multi-bandModulation √
- Equalization
- Synchronization √
- Ultra-Massive MIMO √

Nano Networks

- Error Control √
- Medium Access Control ✓
- Addressing
- Neighbor Discovery
- Relaying
- Routing
- Transport Layer
- Cross-layer

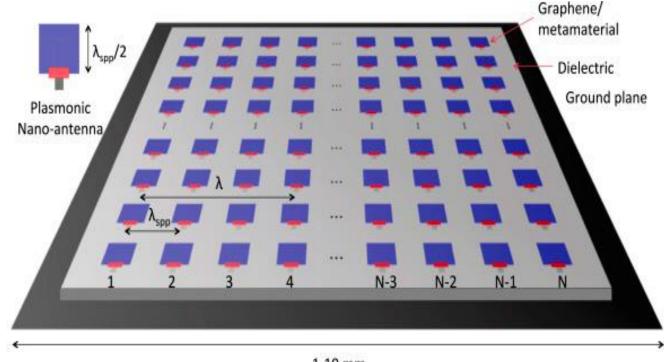

Experimental and Simulation Testbeds

IFA'2025 27

TeraHertz Band Plasmonic Front-end

(TRANSCEIVER+ANTENNA)

- I. F. Akyildiz & J. M. Jornet, "Graphene Based Plasmonic Nano-Antenna for THz Band Com in NanoNetworks" U.S. Patent No. 9,643,841, May 9, 2017.
- I. F. Akyildiz & J. M. Jornet, "Graphene Plasmonic Nano-transceiver for Wireless Com in the THz Band," U.S. Patent No. 9,397,758, July 19, 2016.



COMBATING DISTANCE PROBLEM: ULTRA-MASSIVE MIMO

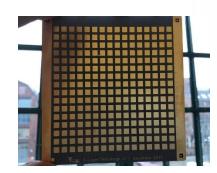
I. F. Akyildiz and J. M. Jornet

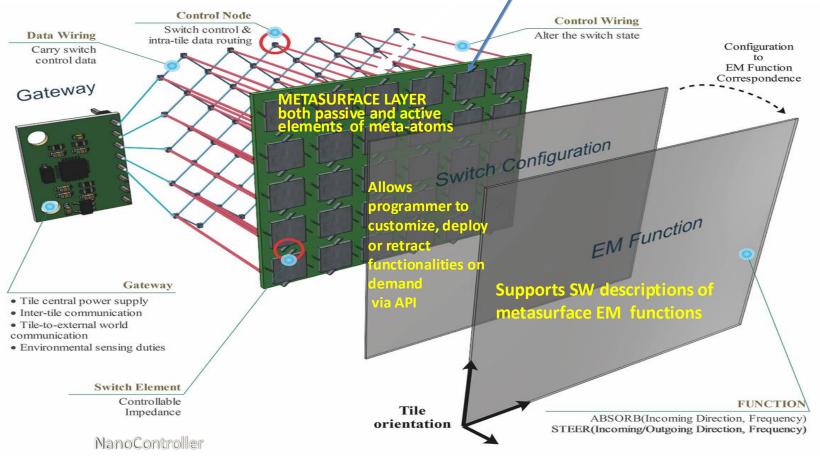
"Realizing Ultra-Massive MIMO Communication in the (0.06–10) TeraHertz Band" U.S. Patent 15/211,503 awarded on Sept. 7, 2017.

Planar Array with 32x32 antenna elements in total of 1024 elements

1-10 mm

UM-MIMO can achieve at least 10-fold increase in transmission distance at 300 GHz and 1 THz compared to M-MIMO

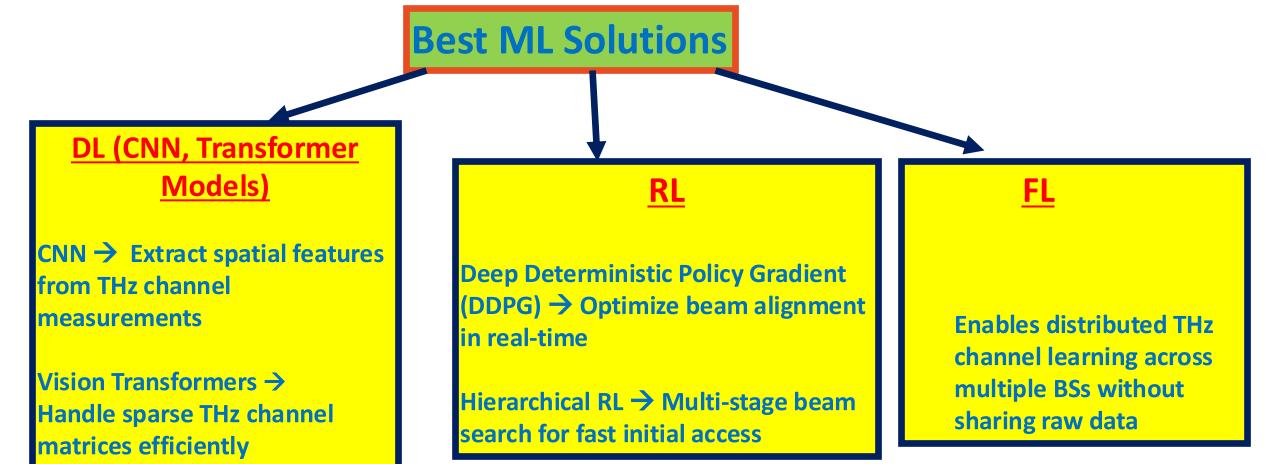



A. Pitsillides, C. Liaskos, A. Tsioliaridou, S. Ioannidis, I. F. Akyildiz, "Wireless Communication Paradigm Realizing Programmable Wireless Environments through Software-controlled Metasurfaces"

US PATENT, 10.547.116 B2; January 28, 2020.

IFA'2025

meta atoms/

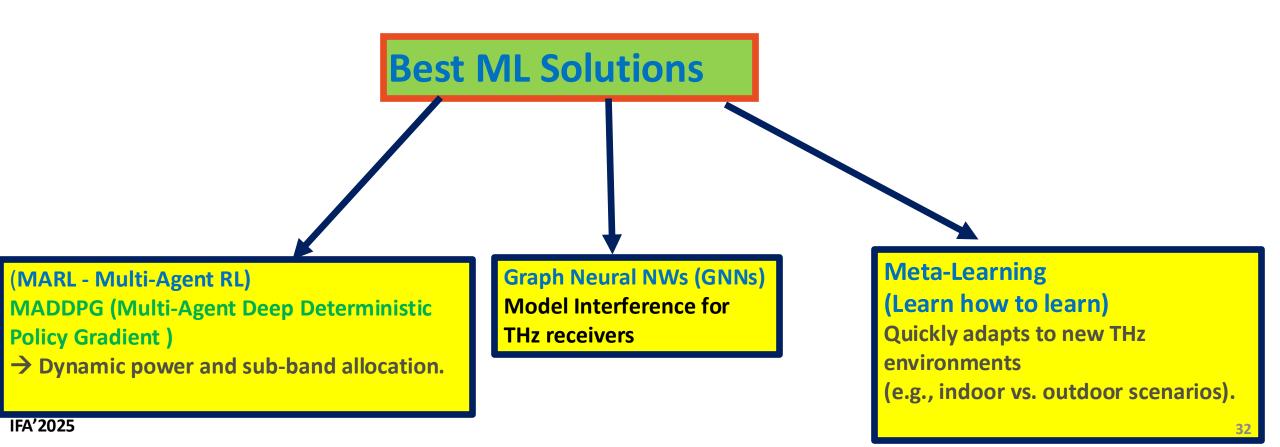

metallic

patches/

CASE 2: AI-Native THz BAND COMMUNICATION

1. Channel Estimation & Beam Alignment

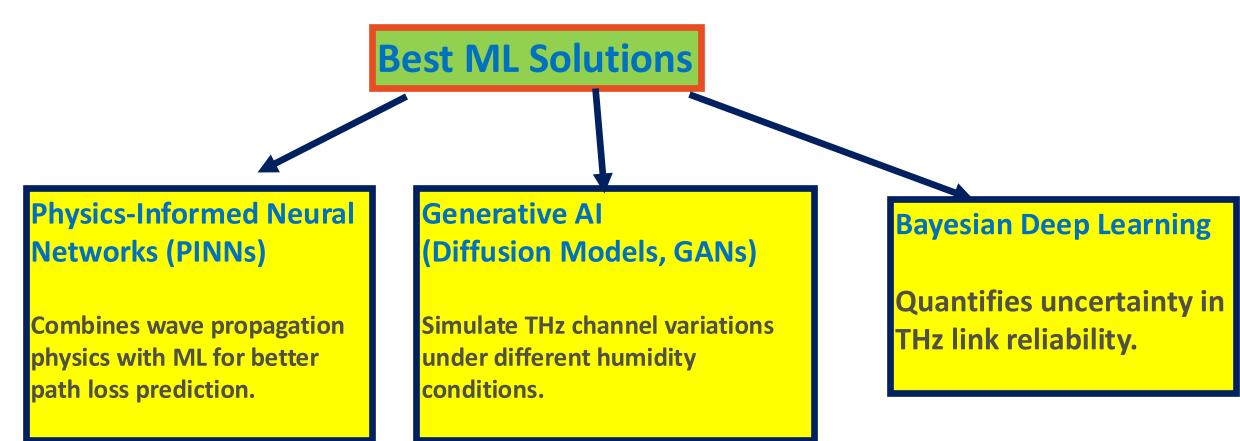
Problem: THz channels suffer from high path loss, molecular absorption, and dynamic blockage, requiring ultra-fast and accurate beamforming.



CASE 2: AI-Native THz BAND COMMUNICATION

2. Resource Allocation & Spectrum Management

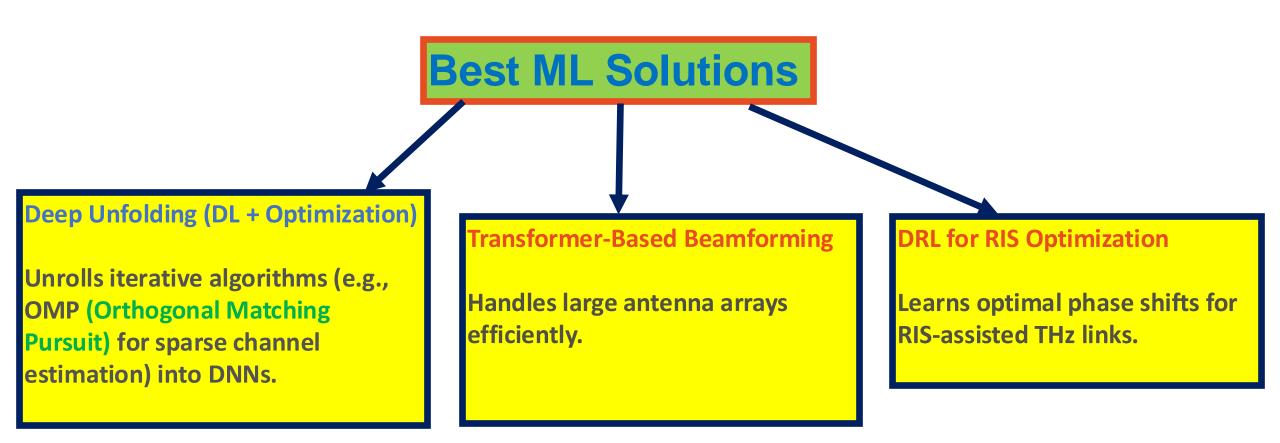
Problem:


THz bands have ultra-wide BW but suffer from dynamic interference and absorption peaks.

CASE 2: Al-Native THz BAND COMMUNICATION

3. Overcoming Molecular Absorption & Blockage

Problem: THz signals are absorbed by water vapor and oxygen molecules, leading to distance-dependent losses.

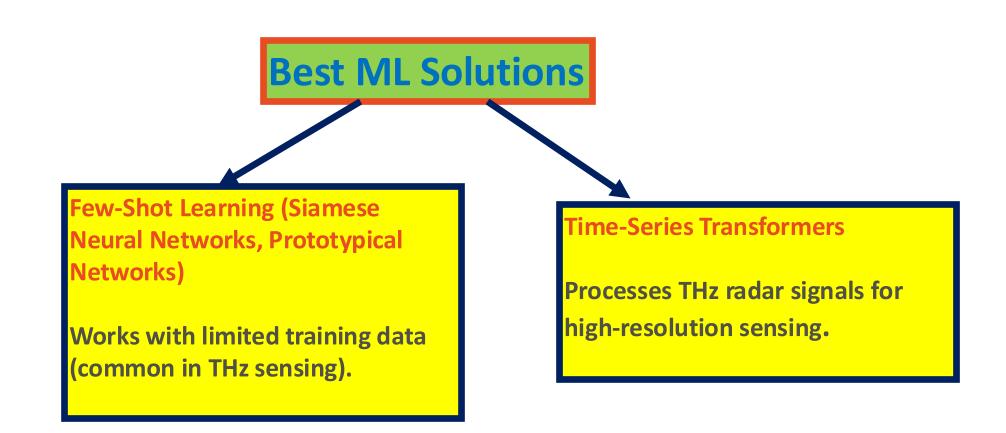


CASE 2: AI-Native THz BAND COMMUNICATION

4. <u>Ultra-Massive MIMO & Reconfigurable Intelligent Surfaces (RIS)</u>

Problem:

THz requires ultra-massive antenna arrays, but traditional signal processing is too complex.



CASE 2: AI-Native THz BAND COMMUNICATION

5. THz Localization & Sensing

Problem:

THz enables mm-level localization, but requires high precision.

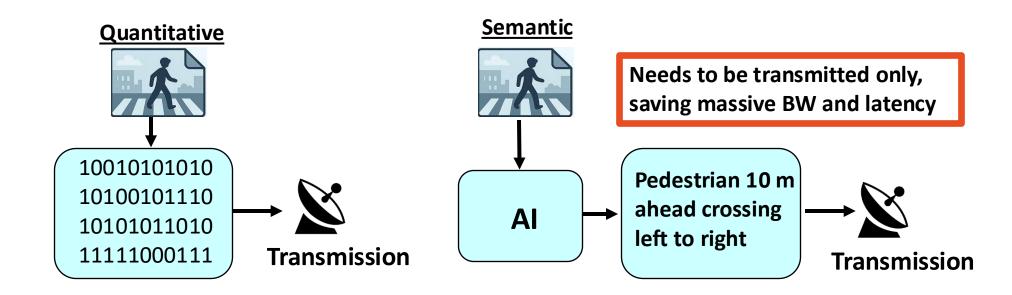
Future Research Directions for THz Band

FL for Distributed
Systems

Enabling collaborative AI training across multiple THz BSs

Quantum Machine
Learning (QML) for THz
Signal Processing

Leveraging quantum NNs for ultra-fast THz waveform optimization


Neuromorphic Computing for Low-Latency THz Beam
Tracking

Spiking neural networks (SNNs) for energy-efficient real-time adaptation

31

Case 3: Quantitative vs Semantic (Qualitative) Communication

- Quantitative Communication: what is received = what is sent
- Semantic (Qualitative) Com: what is received = what is meant to send
 - Packets with small importance value can be dropped
 - Importance value can be determined by entropy

Semantic Communication

W. Weaver,

"Recent Contributions to the Mathematical Theory of Communication"," *ETC: A Review of General Semantics, pp. 261-281, 1953.*

Recent Contributions to
The Mathematical Theory of Communication

Warren Weaver September, 1949

Claude Shannon

Warren Weaver

- Technical Problem:
 - How accurately can the symbols of communication be transmitted? (Shannon's Mathematical Theory)
- Semantic Problem:

How precisely do the transmitted symbols convey the desired meaning?

Effectiveness Problem:

How effectively does the received meaning affect conduct in the desired way?

Case 3: How AI/ML Support Semantic Com in NG Wireless Systems

Semantic Information Extraction & Understanding

- Natural Language Processing (NLP) helps decode human intent in text/speech
- Computer Vision (CV) extracts high-level features (e.g., objects, actions) from images/videos
- Knowledge Graphs & Ontologies structure semantic relationships for efficient reasoning.

Context-Aware Transmission & Compression

- Al models (e.g., transformers, deep neural networks) identify and transmit only task-relevant information
- Semantic compression reduces data overhead by discarding irrelevant details (e.g., background noise in speech).

Case 3: Al-Native Semantic Communication in NG Wireless Systems

Adaptive Resource Allocation

- RL optimizes BW, power, latency based on semantic importance.
- Goal-oriented com prioritizes critical data (e.g., emergency alerts).

Semantic Channel Coding & Error Correction

- Neural decoders recover meaning even with errors.
- Generative AI (e.g., diffusion models) reconstructs lost semantic content.

Edge AI for Distributed Semantic • Processing •

- FL enables collaborative semantic understanding without raw data sharing.
- TinyML allows lightweight models on IoT/edge devices.

Key Challenges in Al-Native Semantic Communication

Interpretability & Trust	 Black-box AI decisions may lead to incorrect semantic interpretations. Need for explainable AI (XAI) in mission-critical applications. 	
Standardization & Semantic Frameworks	 No universal semantic encoding/decoding standards exist yet. Interoperability between different AI models is challenging. 	
Computational Overhead	Real-time semantic process. requires efficient AI models (e.g., quantization, pruning).	
Privacy & Security Risks	 Semantic extraction may expose sensitive user context. Adversarial attacks could manipulate meaning (e.g., deepfake semantics). 	
Dynamic & Uncertain Environments	AI models must adapt to varying user intents and channel conditions.	

Case 4: Zero-Touch Network Management (ZTNM)

Definition:

Self-configuring, self-optimizing, self-healing networks with minimal or no human intervention.

Why?

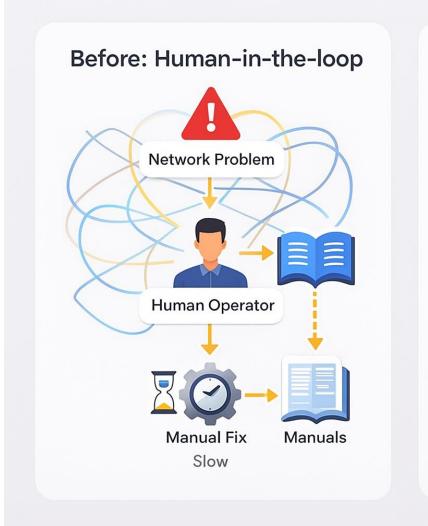
Human-managed networks cannot scale to billions of devices, ultra-low latency (zero latency), extreme reliability demands and managing zettabytes of data and critical energy consumption.

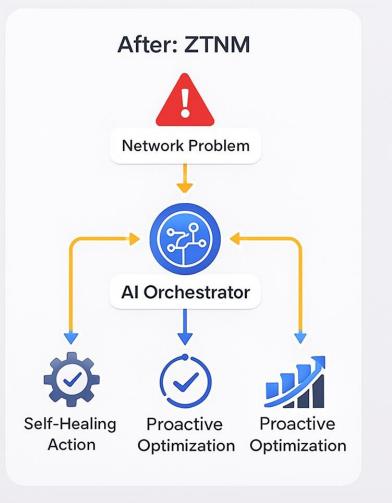
How?

Self-Healing Networks:

Al predicts and fixes failures before they occur (e.g., fiber cuts, congestion).

Intent-Based Networking (IBN):


Operators define policies (e.g., "Ensure 1ms latency for AR/VR"), and AI executes them autonomously.


Automated SLA Enforcement:

Al ensures QoS dynamically for different services (e.g., healthcare vs. gaming).

42

Al-Native ZTNM Solutions Deployed (Before and After Al Automation)

Al-Native ZTNM Solutions Deployed (Before and After Al Automation)

	BEFORE	AFTER
OPEX Reduction (40%)	High labor costs for manual monitoring/troubleshooting	Al automates 80% of repetitive tasks
Fault Resolution Speed (30% Faster)	4-hour mean-time-to-repair (MTTR)	2.8-hour MTTR with Al-driven diagnostics
Energy Savings (20%)	BSs run at 100% power 24/7.	Al optimizes power usage (e.g., 50% power during off-peak)
Network Uptime (99.999%)	99.9% uptime (8.8 hours downtime/year)	5.3 minutes downtime/year

- Revenue Generation for Already Existing & New Services
- Reduce errors through minimization of human intervention
 - Guaranteed adherence to dynamic and robust SLAs
- Increased Reliability and Efficiency

Key AI Technologies for ZTNM

- Deep Reinforcement Learning (DRL): For dynamic, real-time optimization.
- Federated Learning (FL): For privacy-preserving, collaborative Al.
- Digital Twins & Generative AI: To simulate and test networks using synthetic data.
- Explainable AI (XAI): To build trust and ensure decisions are transparent.

45

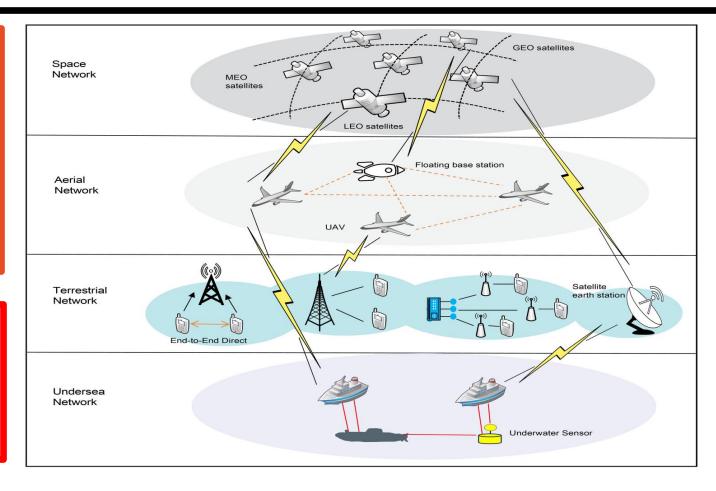
Grand Challenges on the Path to Autonomy

- Data Problem: How do we train Al without real 6G data? (Solution: Digital Twins, Federated Learning)
- Trust Problem: How do we trust a "black-box" AI? (Solution: Explainable AI)
- Speed Problem: How can AI make decisions in under 1ms? (Solution: Lightweight Edge AI)
- Unity Problem: How can AI manage a mix of satellites, drones, and ground system

(Solution: Cross-Domain Al Orchestration)

The Cognitive Wireless Era Vision: Al Based Unified Ecosystem

(Seamlessly Connecting the Deep Seas to Deep Space)


A single packet journeying from an UW sensor, to a drone, to a satellite, to a terrestrial BS, with an AI orchestrator managing the entire, complex handover in real-time.

"The Cognitive Wireless Era"

- Each domain has different procotols (5G NR vs. acoustic modems vs. satellite DVB-S2X) & latency profiles (ms in 5G vs. sec in satellite vs. variable in UW,
- Manually managing handovers is impossible.
- Need a universal translator.

Al-based protocol translation (e.g., converting 5G packets to acoustic signals)

Challenge: No universal standards for Al-driven multi-domain networking.

TOWER OF BABEL

The Brain: The AI Orchestrator

Centralized Intelligence:

Global view for optimal routing and slicing, in particular, manages cross-domain resource allocation, mobility & slicing.

Distributed Agents:

Deployed at edge nodes for real-time decision-making.

Federated Learning:

Enables collaborative AI training across domains without raw data sharing (without compromising data privacy) → synchronization is hard !!

Automated Network Management

Al automates network operations, reducing human intervention and improving efficiency.

* Self-Healing and Self-Optimization

Anomaly Detection: Al detects and mitigates NW failures (e.g., satellite link drops, UW node malfunctions). Dynamic Reconfiguration: Al adjusts beamforming, routing, and power allocation in real time.

* Predictive Maintenance

Al predicts HW degradation in UW sensors or satellite components using historical data

* Zero-Touch Network Management

Al automates provisioning, scaling, and security policies across terrestrial, UW and space segments.

AI-Driven Resource Allocation

Efficient resource allocation is critical in multi-domain networks due to varying latency, bandwidth, and reliability constraints.

Dynamic Spectrum Sharing

- Al optimizes spectrum usage across 5G, satellite, and UW acoustic bands.
- Reinforcement Learning (RL) adapts to interference and congestion.

Cross-Domain Load Balancing

Al routes traffic through optimal paths (e.g., terrestrial vs. satellite backhaul)

Energy-Efficient Operation

- Al minimizes power consumption in underwater nodes and satellites.
- Sleep scheduling for IoT devices based on traffic prediction.

AI-Enabled Network Slicing

Network slicing creates virtualized, isolated sub-networks tailored for different services

Problem:

- Mission-critical communications (defense ops)
- Industrial automation (smart factories)
- Remote environmental monitoring (UW, space)
- Slices must dynamically adapt when switching domains (e.g., AUV moving from UW to satellite link)

AI Solutions & Challenges:

- . DRL for slice lifecycle management
 - Example: Al reallocates resources when a submarine loses acoustic link and switches to buoy-satellite relay.
- . Challenge: Al must guarantee isolation between slices (e.g., military vs. civilian traffic).

Security & Privacy in Multi-Domain Networks

Problem:

- . Sensitive data (defense, offshore oil rigs, satellite imaging).
- Vulnerabilities increase when integrating:
 - UW sensors (easily tampered with)
 - Satellite links (susceptible to jamming)
 - Terrestrial edge nodes (physical attacks)

AI Solutions & Challenges:

- . FL for secure model training
 - Keeps raw data localized (e.g., UW sonar data stays on AUVs).
- . Al-driven intrusion detection
 - Detects anomalies in satellite-terrestrial handovers.
- Challenge: Adversarial AI attacks can fool detection systems.

Energy Efficiency & Al at the Edge

Problem:

- UW nodes (battery-powered, hard to recharge)
- Satellite payloads (limited solar power)
- Remote terrestrial edge servers (diesel generators in oil fields)

AI Solutions & Challenges:

- TinyML for low-power AI inference
 - Example: Lightweight AI models on UW sensors for anomaly detection.
- . Challenge: Heavy AI workloads drain batteries faster.

Predictive & Seamless Handover Management

From Reactive to Proactive Mobility Management

 Problem: Blind handovers between high-speed LEO satellites and terrestrial cells cause packet loss and service disruption

Al Solution: DRL for Handovers

Conclusion: The Cognitive Era is Here

- Standing at the threshold of the cognitive wireless era.
- Shift from connecting things to connecting intelligence.
- From reactive networks to predictive, cognitive systems.
- Al-Native is the engine.
- Transformation of society, industry, and human potential.
- Question is no longer if this will happen, but how quickly we can responsibly build it.

