Connecting ideas, anticipating the future: collaborative innovation for 5G and 6G networks.

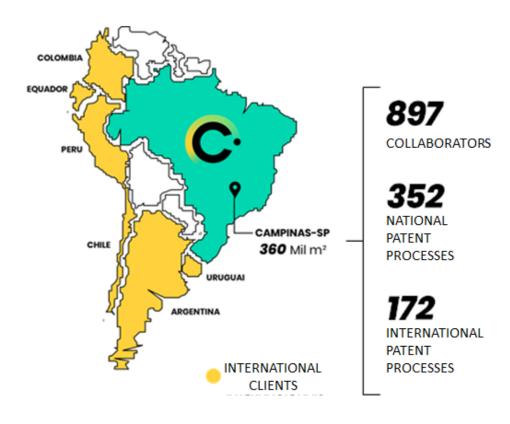
II INTERNATIONAL WORKSHOP XGMobile

Organized by:

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

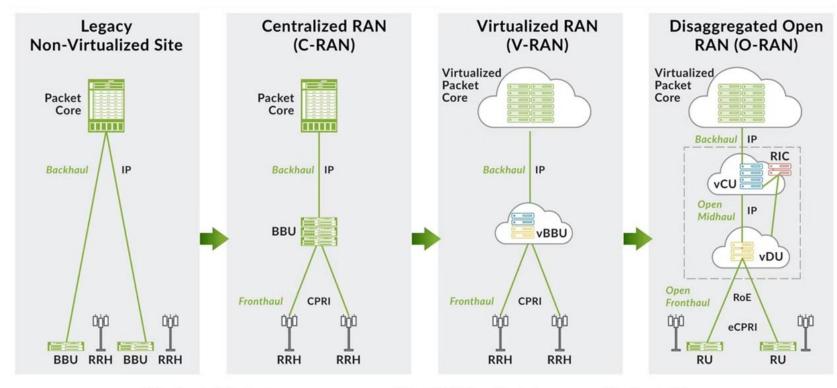
Fuad Abinader (<u>fuad@cpqd.com.br</u>)

EMBRAPII CPQD Excellence Centre in Open Networks (EXCCON)



CPQD in a Nutshell

2 SPIN-OFFS


TRÓPICO (WIRELESS AND DATA NETWORKS)
PADTEC (OPTICAL COMMUNICATIONS)

- Founded in 1976 as the R&D branch of Telebrás (public national telecom operator)
- After the privatization process in 1998 it became a private not-for-profit foundation
- Largest ICT R&D Program in Latin America
- Revenues of R\$ 229 mi (~ €37 mi) in 2019
- Presence in all telecom operators in Brazil and some in Latin America (OSS Suite)
- Certified labs for compliance testing according to local regulations
- Host of a TIP Community Lab
- Brazilian branch of the BRICS Institute for Future Networks Initiative
- Deep knowledge of the local regulatory framework and market structure

The Open RAN Paradigm & Motivations

Evolution of RAN Architecture: Traditional vs. Open RAN (O-RAN)

Rapid growth in NW capacity demand and diverse services.

O-RAN → disaggregated components connected via open interface, powered by NFV and SDN advances.

Provides reduced TCO, flexibility and rapid innovation cycles.

Challenges include *latency* requirements and ensuring sufficient processing capacities for NFVs.

RRH = Remote Radio Head

BBU = Baseband Unit

CPRI = Common Private Radio Interface

RIC = RAN Intelligent Controller

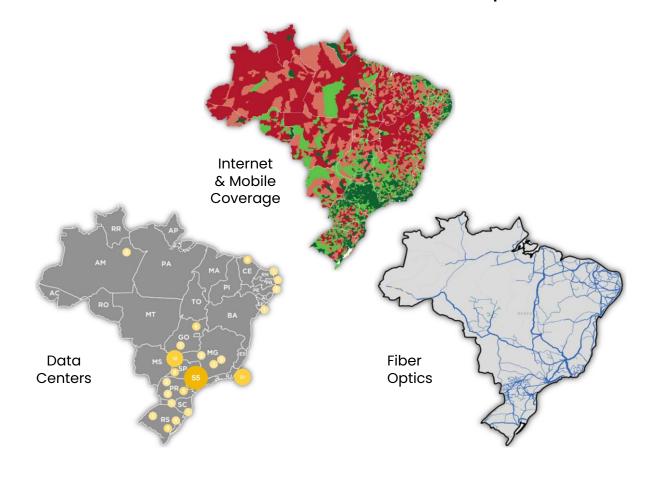
CU = Centralized Unit

DU = Distributed Unit

RU = Remote Unit RoE = Radio over Ethernet eCPRI = Ethernet CPRI

Source: Juniper Networks

Moving Towards a Brazilian Open RAN


Challenges for the Open RAN ecosystem in Brazil

O-RAN Alliance is majorly influenced by North Hemisphere countries

Region	Operators	Members
North America	7	~50-70
Latin America	0	~5-10
EMEA	8	~80-100
Japan / North Korea	7	~40-60
APAC	4	~30-40
Greater China	4	~40-60
Total	30	300+

Continental Dimensions, Isolated Areas, Heterogeneous Infrastructure, and the Challenges for 5G Monetization for 5G Broad Expansion

Open RAN @ CPQD

A platform to research, develop and test new technologies and use cases considering **State-of-the-art** technologies (Open RAN, SDN, 5G, etc), a **Learning** environment for universities to execute tests, a **Lab** used for new technologies validations and a Space to **promote** the development of Open RAN solutions through 5G applications

Plataforma 5G BR

Development of **end-to-end 5G network** technologies, targeting private network markets, and small and medium providers. Development of 5G core and RAN through **virtualization and disaggregation.** Integration with an RU (Radio Unit) compatible with open architectures (TIP, O-RAN Alliance). Development of the **services and infrastructure automation** platform to manage the creation, control and monitoring of network slices in 5G networks.

Consolidating the Open RAN ecosystem in Brazil

The accreditation of CPQD as the Excellence Centre in Open Networks (EXCCON)¹ stems from the initiative of the Ministry of Science, Technology & Innovation (MCTI) and the Brazilian Company of Research & Industrial Innovation (EMBRAPII).

US\$ 25 M from EMBRAPII and FAPESP (50% each) during 42-month to operate 5 lines of action:

- RD&I Projects
- HR Training and Education
- Attraction, Creation and Acceleration of Startups
- Developing the Open RAN ecosystem wit the Technological Association
- South American OTIC (SAOC)

Connecting global standards to Brazilian needs

Our Focus

Network Intelligence with AI/ML

Cloud Multi-X RAN
Orchestration
(Cloud/Tenant/
Vendor)

Energy Efficiency and specialized RAN HW

Digital Inclusing and Support for Verticals (Telemedicine, Agro 4.0 and more)

Mission, Vision and Competences

Mission: To drive Brazil's technological sovereignty in connectivity through high-quality, interoperable innovations in Open RAN, Cloud, and Al/ML for the RAN that address social and economic challenges

Vision: To be the catalyst for Brazil's regional leadership in open, virtualized and disaggregated 5G and 6G, building a fully intelligent and energy-efficient ecosystem where connectivity is a reality for all citizens

Competences:

Cert/IOT/E2E
Certification

Testing & Prototyping

RAN SW Virtualization

Multi-X RAN
Orchestration

Multi-X RAN
Automation

RAN Network
Intelligence

RAN Digital
Twins

Energy Efficiency

Support BR Ecosystem

SAOC, the LatAm Gateway for a Global Open RAN

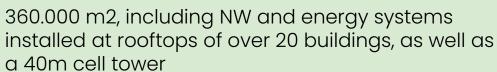
South American OTIC ad Campinas (SAOC)

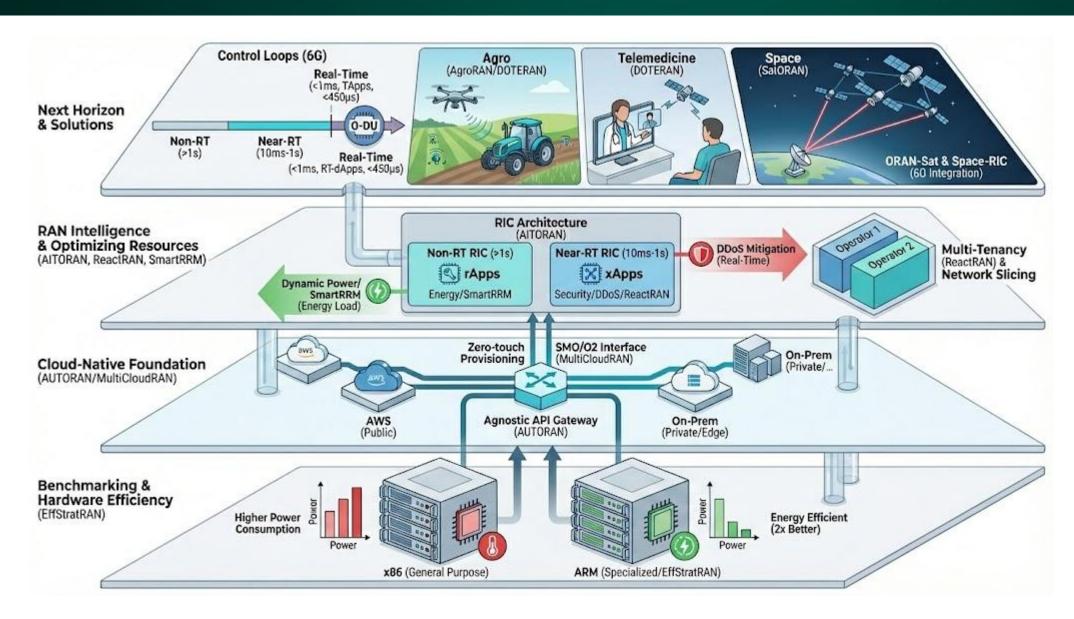
First Open Test and Integration Center (OTIC) of Latin America (LATAM)

Conformance, IOT and E2E Performance, Badging, PlugFests, and much more

Optimizing Open RAN for the Brazilian and LATAM ecosystems

Strategic MoUs


Wireless Comms @ Pólis de Tecnologia

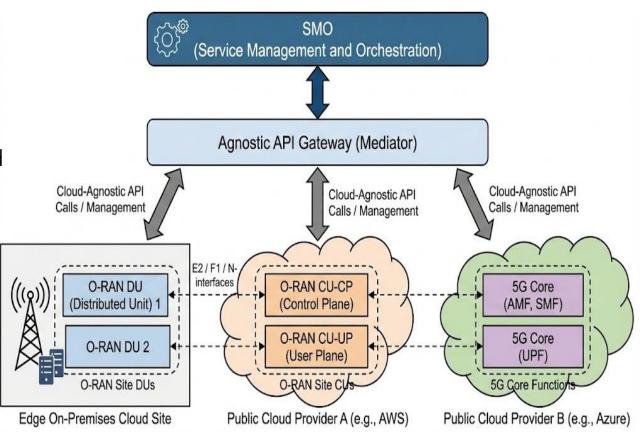


Open RAN R&D Program @ EXCCON

Towards An Open, Disaggregated, Virtualized and Intelligent 6G Future

The Cloud-Native Foundation

AUTORAN and MultiCloudRAN projects



Challenge: Managing disaggregated networks across heterogeneous clouds (private, public, edge) is a complex and expensive tasks

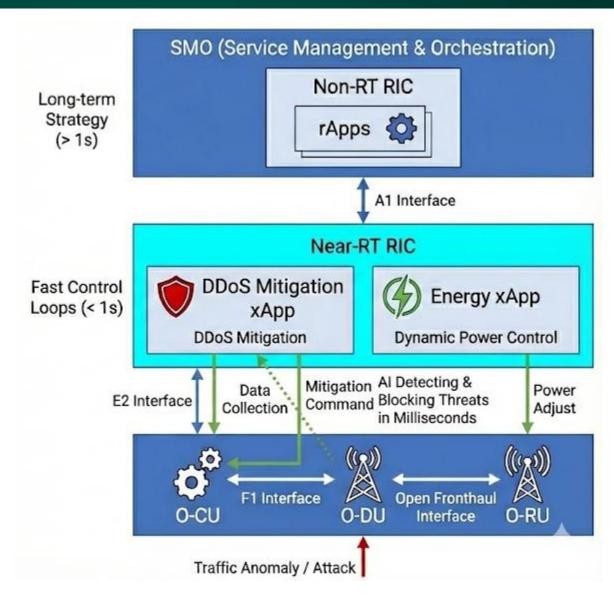
Project AURORAN: Focused on automation strategies. Developed an **Agnostic API Gateway** to "translate" operations between different cloud providers, eliminating vendor lock-in.

Project MultiCloudRAN: Focuses on the O2 interface. Enables agnostic orchestration of heterogeneous resources.

Goal: Zero-Touch for provisioning Open RAN networks, where the network automatically deploys functions to the best available cloud resource.

RAN Intelligence (Security & Efficiency)

AITORAN Project



Challenge: Moving from static configuration to dynamic Al control via RIC

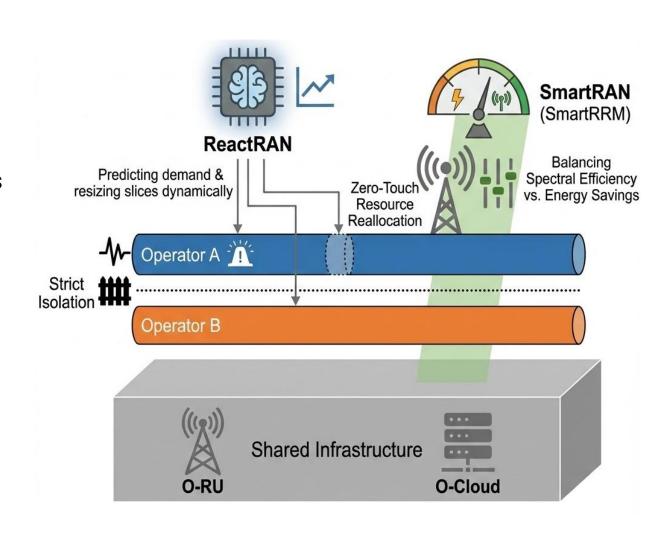
The AITORAN project provided a framework for AI/ML in the RAN

- Security: using xApps with AI/ML models for real-time DDoS mitigation on the initial access (signaling storm)
- Energy Efficiency: Dynamic DL power adjustments for Radio Units (RUs) based on traffic load, crucial for reduced CAPEX

Goal: Transform the network from reactive to proactive

Optimizing Resources (Multi-Tenant & Energy-Efficiency)

SmartRAN and ReactRAN projects



Challenge: Sharing infrastructure (i.e. neutral host models) is key for TCO reduction in Brazil.

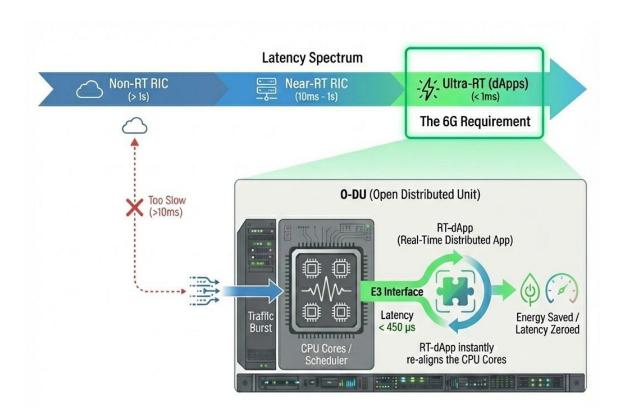
Project ReactRAN: Focuses on Multi-Tenant environments. Ensures one tenant's traffic spike doesn't degrade another's service. Uses AI to predict demand and reconfigure RAN parameters dynamically.

Project SmartRAN: Extends multi-scale control (coordination between xApps and rApps). Optimizes Radio Resource Management (RRM) to balance spectral efficiency with energy consumption.

Goal: Transform the network from reactive to proactive

The Next Horizon: Ultra-Real-Time Control (6G)

RT-dApps Project



Challenge: Current RAN architectures (RICs) have a "blind spot" for ultra real-time control loops (<10ms)

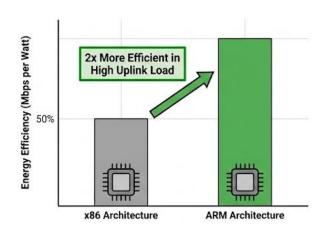
Project Real-Time dApps (RT-dApps)

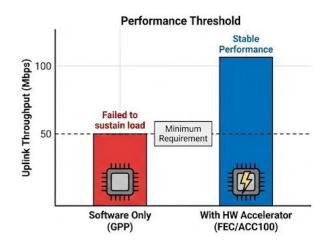
- Brings AI control inside the O-DU.
- Uses the E3 interface for sub-ms optimizations.
- Initial use case is joint BWP adaptation with CPU Affinity optimization

Goal: Achieve sub-ms latencies for control actions, essential for future 6G applications.

Benchmarking & Hardware Efficiency

EffStratRAN Project




Challenge: The Hardware Dilemma: General Purpose Processors (x86) vs. specialized silicon (ARM, ASIC).

Project EffStratRAN

- Benchmarking energy-efficient platforms.
- Finding: In high uplink load scenarios, ARM architectures showed up to 2x better energy efficiency than traditional x86.
- Necessity: hardware acceleration (e.g., for FEC) is not optional but mandatory for high throughput.

Goal: Giving operators the data to make the right CAPEX/OPEX decisions.

Solutions for Brazil: Agro & Telemedicine

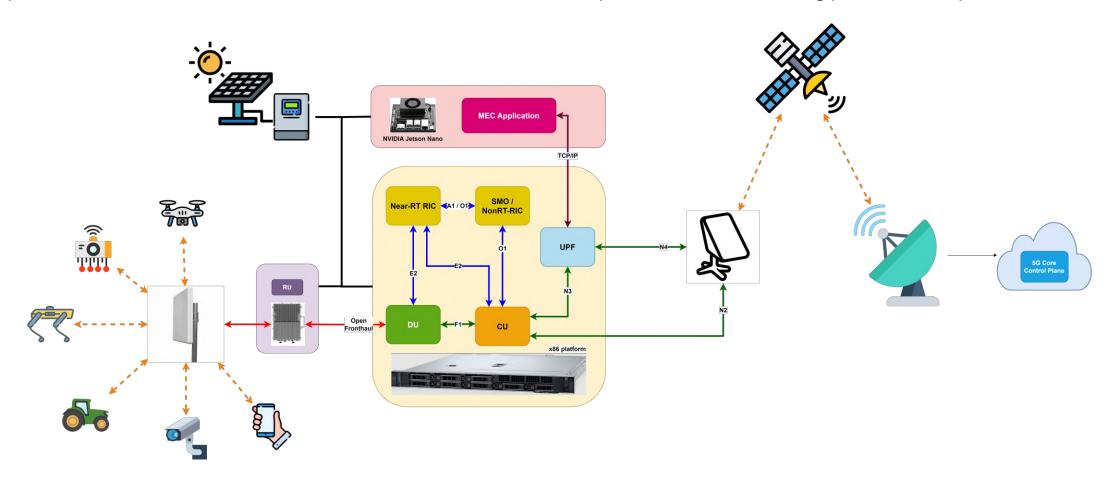
DOTERAN project

Telemedicine @ InovaHC

2.300 km distance (w/ Starlink) and a 8.3 / 10 qualitative score from the medical team

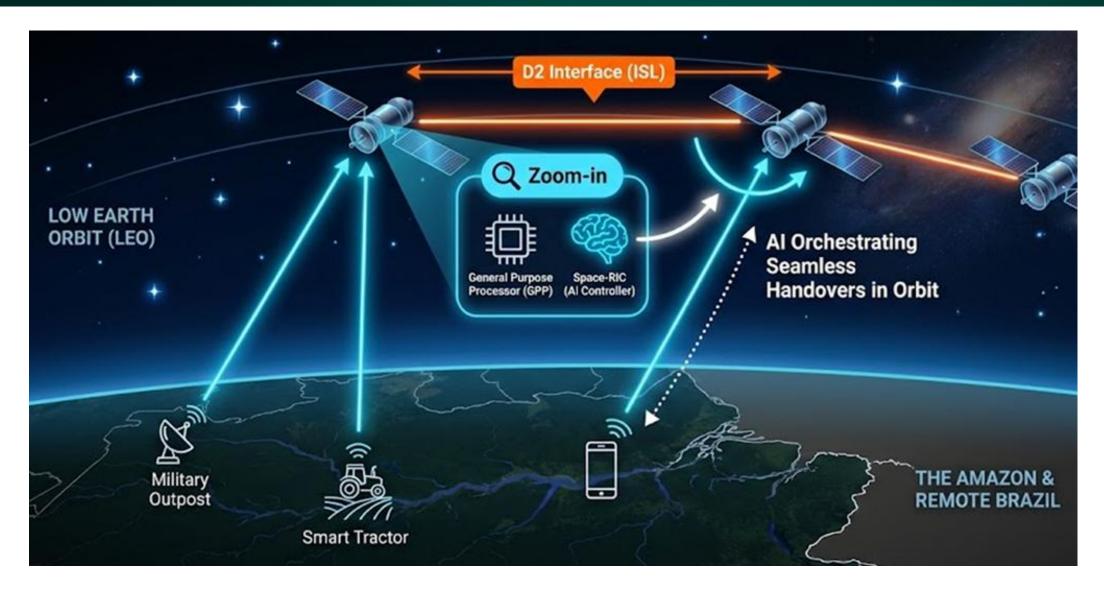
Edge Sharing for Agro 4.0

Low latency Computer Vision app with MEC sharing and local UPF achieving < 20ms latency



Solutions for Brazil: Agro & Telemedicine

AgroRAN project


AgroRAN Project: Solar-powered Open RAN, shared MEC for RAN and Computer Vision application, satellite backhaul, AI for control and optimization (energy efficiency)

Beyond Terrestrial: Open RAN in Space

ORAN-Sat Project

Open RAN: Connecting the Dots with Partners

Upcoming Joint R&D Projects with other EMBRAPII Competence Centers

SGHaul: Resilient Backhaul for Smart Grids

ConneXR-FDT:
Digital Twins for
Immersive Apps

Open Gateway: Robotics and Programmaber 5G

Problem: Lack of resilient, highperformance backhaul standards for Smart Grid AMI, specifically missing integration for IEEE 802.15.4 mesh networks.

Solution: EXCCON's 5G NR backhaul w/ Network Slicing + RIC (xApps/rApps) to segment AMI control (URLLC) vs. measurement (mMTC) traffic, plus FutureGrid's IEEE 802.15.4 Wi-SUN gateway.

Problem: High cost and slowness in testing and prototyping Immersive XR applications over complex, dynamic mobile networks.

Solution: EXCCON's Mobile
Network Digital Twin (MNDT)
focusing on Open RAN w/ Al
xApp for RIC for predictive
resource orchestration + Akcit's
Immersive Application Digital
Twin (XR DT).

Problem: "Difficulty ensuring Quality on Demand (QoS/QoD) in mobile networks for rigorous low-latency, high-reliability reqs of real-time remote robotics and Computer Vision.

Solution: EXCCON's Private 5G
NR based on Open RAN.
Integrate RIC (xApps/rApps) for
resource optimization and SLA
guarantees via Open Gateway
API for xGMobile, CEDRA, Akcit
and CISSA's applications

Conclusions & Future Outlook

The Road Ahead

EXCCON is not just testing technology; we are paving an open, disaggregated, virtualized and intelligent connectivity road for Brazil's digital future.

From Cloud Native automation (AUTORAN) to Al-driven Security (AITORAN) and Ultra-Real-Time control (RT-dApps), the goal is accessible, robust, and sovereign solutions.

Whether it's a clinic in the Amazon or a smart farm in the Midwest, Open RAN + AI is how we deliver meaningful connectivity!

Thank You!

Fuad Abinader

Cel.: +55 92 98627-3631

fuad@cpqd.com.br

OPEN RAN

MCTI EMBRAPII CAC

https://www.cpqd.com.br/openran/

Connecting ideas, anticipating the future: collaborative innovation for 5G and 6G networks.

II INTERNATIONAL WORKSHOP XGMobile

Organized by:

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

